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Abstract. This work presents an analytical study of three partial differential equations systems
that describe foam flow models in porous media. The first two models consider the surfactant
concentration fixed above the critical micellar concentration: First Order Kinetic model and a
simplified version of the Stochastic Bubble Population balance model. A significant difference
between these models is the influence of critical water saturation in the first model. The third
model generalizes the second by varying the surfactant concentration and considering gas mobility
that depends on the surfactant concentration. We study the traveling wave solutions of such systems
using phase portrait analysis. All obtained analytical solutions are confirmed using direct numerical
simulations of the system of partial differential equations. The second model is validated with
experimental data.
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1 Introduction

Oil Recovery is commonly based on continuously injecting an auxiliary fluid through the injec-
tion well until it reaches the production well, displacing the oil in the reservoir. The definition of
Enhanced Oil Recovery (EOR) intends to exclude all pressure maintenance processes, but it is not
restricted to a specific phase in the reservoir’s production life. Many works study models of EOR
methods in the last decades [1–3, 9, 10].

Alternating water and gas (WAG) injection is one of several EOR techniques that seek to reduce
the mobility of the injected fluid and thus improve oil recovery. Although this method increases oil
recovery, similarly to the gas injection technique, it can still be hindered by effects such as viscous
fingering formation, gravity override, and reservoir heterogeneities. An alternative is diluting
surfactant in the aqueous phase and injecting such a solution alternately with the gas. So, the
flow inside the porous medium generates foam by reducing gas mobility considerably, consequently
improving recovery efficiency. This strategy is known as foam injection. Foam injection addresses
all three causes of poor sweep efficiency mentioned above, [6].

Much research has increased broadly in foam flow through porous media due to its applications
in complex processes such as oil recovery and soil remediation.

The non-Newtonian flow properties and their dependence on foam generation and coalescence
make the development of physical models of foam flow in porous media challenging. Several
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models have been developed to better understand the features of foam flow in porous media. In
the literature, there are substantial experimental and numerical studies of this topic [1, 3, 9].
However, there are few works addressing the foam flow from the mathematical point of view [1, 5].
This can be attributed to the novelty of the topic and the complexity of the equations.

A promising classification of models for foam displacement in porous media is based on the
variable describing the foam texture. Models can be empirical (where foam texture is defined
through certain empirical relations) and mechanistic (based on bubble population balance). Em-
piric models are less complex and more numerically stable. However, a model that assumes that
the foam immediately attains local steady-state, as the strong foam is clearly inadequate in cases
where strong foam generation is in doubt. Mechanistic foam models consider a specific differential
equation to describe foam texture. These models have successfully matched several laboratory
experiments. From a mathematical point of view, mechanistic models describe foam generation
and coalescence as a source term that depends linearly on the kinetic parameter. See [9, 13] for
details.

Several experimental investigations and analytical studies point to saturation and foam texture
profiles that are similar to traveling waves [1, 4, 9]. This work aims to provide analytical solutions
for systems that model foam injection. We present numerical solutions and experimental data to
validate analytical solutions.

2 Foam Flow Models

In all models that will be studied in the following sections, we consider that ϕ denotes the
porosity, u is the superficial velocity, Pc is the capillary pressure, ug is the superficial velocity of
the gas phase, k is the permeability of the medium, krw and krg are relative permeabilities of water
and gas phases, and the viscosities are given by µw and µg. The foam generation source term is
Φ. The critical micelle concentration is Ccmc. The water saturation is Sw, the dimensionless foam
texture is nD, the gas saturation is Sg = 1− Sw, and C is the surfactant concentration.

2.1 Foam Flow Models with Fixed Surfactant Concentration

Considering one-dimensional, two-phase incompressible flow in a homogeneous and saturated
medium. The foam displacement with fixed surfactant concentration in a porous medium can be
modeled by the following system of Partial Differential Equations (PDEs):

∂

∂t
(ϕSw) +

∂

∂x
(u fw) = − ∂

∂x

(
fwλg

dPc

dSw

∂Sw

∂x

)
,

∂

∂t
(ϕSg nD) +

∂

∂x
(u fg nD) =

∂

∂x

(
fwλg

dPc

dSw

∂Sw

∂x
nD

)
+ ϕSg(K)(nLE

D − nD).
(1)

The system (1) is used to represent the first two models: The First Order Kinetic(FOK) model
[5] and the Simplification of the Stochastic Bubble Population (SSBP) model [12]. In these models,
the viscosity is taken as a constant, and the gas relative permeability krg is modified by the Mobility
Reduction Factor [1, 12]. For the SSBP model, inspired by [1], we correlate the gas phase mobility
expressions for FOK [1] and Stochastic Bubble Population (SBP) [3, 13] models. So, we obtain the
Mobility Reduction Factor (MRF) as a linear function and the viscosity constant. The functions
and parameter values used in these models can be found in [1, 5] for the FOK model and in [9, 12]
for the SSBP model. These models differ mainly in the source term Φ = ϕSg(K)(nLE

D − nD) given
in Table 1. Note that Φ in the FOK model depends on the critical water saturation (S∗

w).
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Table 1: Foam generation source term.

FOK model [1, 5] SSBP model [9, 12]
K = Kc K = Kg +Kd

nLE
D (Sw) =

{
tanh(A(Sw − S∗

w)), Sw > S∗
w,

0, Sw ≤ S∗
w.

nLE
D =

Kg

Kg +Kd
= conts.

To study the solution of system (1), we consider the initial conditions:

(Sw, nD)(x, 0) =

{
(S−

w , n−
D), x < 0,

(S+
w , n+

D), x > 0.
(2)

2.2 Foam Flow Model with Variable Surfactant Concentration
To generalize the SSBP model [12] including surfactant concentration, we obtain

∂

∂t
(Sw) +

∂

∂x
(fw) +

∂
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(
δfwλg
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= 0,

∂
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∂
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(
δfwλg
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dSw
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∂x
nD

)
= Φ,

∂

∂t
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∂
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(fw C) +

∂

∂x

(
δfwλg

dPc

dSw

∂Sw

∂x
C

)
= −αΦ,

(3)

where
Φ =

Lϕ

u
(1− Sw)(Kg +Kd)(n

LE
D − nD), δ = 1/(uL), (4)

nLE
D (C) =

Kg Ψ

Kg Ψ+Kd
, Ψ = Ψ(C) =

{
C(2Ccmc − C)/(Ccmc)

2, C ≤ Ccmc,
1, C > Ccmc.

(5)

The fractional flow theory functions and parameter values used in the model (3) are obtained
from [9, 12]. For found a unique solution of (3), we consider the initial conditions:

(Sw, nD, C)(x, 0) =

{
(S−

w , n−
D, C−), x < 0,

(S+
w , n+

D, C+), x > 0.
(6)

3 Traveling Waves
To find a traveling wave solution, we consider the called traveling variable ξ = x− v t, and we

transform the system of PDEs into a system of Ordinary Differential Equations (ODEs).

3.1 Traveling Waves for FOK and SSBP Models
Using the traveling variable ξ = x − vt, the following system of ODEs is obtained for the

variables Sw and nD from (1):

dSw

∂ξ
=

u[fw − f+
w + vs(S

+
w − Sw)]

−fwλg
dPc

dSw

,
dnD

∂ξ
=

ϕSg (K)(nLE
D − nD)

u (1− f+
w − vs(1− S+

w ))
. (7)

The left and right states given in (2) become the left and right equilibrium points of (7):

lim
ξ→−∞

(Sw, nD)(ξ) = (S−
w , n−

D), lim
ξ→+∞

(Sw, nD)(ξ) = (S+
w , n+

D). (8)

A formula for velocity of traveling wave is obtained

v = (u/ϕ)vs, with vs = (f+
w − f−

w )/(S+
w − S−

w ). (9)
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3.1.1 FOK Model

For a fixed S+
w , by varying S−

w and the foam kinetic rate Kc, we study the eigenvalues of the
Jacobian matrices associated with the vector field in (7). The parameter space S−

w ×Kc is divided
into six regions, as shown in Fig. 1. In Region I, the left equilibrium is a saddle, and the right one
is a source. In Region II, the left equilibrium is a source, and the right one is a saddle. In Region
III, the left equilibrium is a complex source, and the right one is a saddle. In Region IV, the left
equilibrium is a complex sink, and the right one is a saddle. In Region V, the left equilibrium is
a sink, and the right one is a saddle. In Region VI, both the left and right equilibria are saddles.
For more details, see [5].
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Figure 1: Classification of regions in the semi-plane Sw ×Kc by equilibrium type. (a) Regions of
S−
w for S+

w = 0.72. Curve C represents saddle-saddle connections between left and right states. (b)
Zoom near S∗

w within a small box from Fig. (a). The dotted line indicates Sw = Sb
w. Source [5].

3.1.2 SSBP Model

For a fixed S+
w by varying the value S−

w , we study the eigenvalues of the Jacobian matrix
associated with the vector field of system (7) and we describe the necessary conditions for the
existence of the traveling waves. For the simplified model by [9], we arrive at a similar classification
to [5]. The parameter space S−

w × Kg is divided into regions according to the eigenvalues of the
equilibria, as shown in Fig. 2. In Region I, the left equilibrium is a source, and the right one is a
saddle. In Region II, the left equilibrium is a saddle, and the right one is a saddle. See [12] for
more details.

III

Figure 2: Regions’ classification according to the equilibrium type. The points B, C and D
correspond to numerical simulations. Experimental results correspond to points A and E .

(a) Space S−
w ×Kg and nmax = 250 mm−3. (b) Space S−

w × nmax and Kg = 0.1. Source [12].
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3.2 Traveling Waves for the Model with Surfactant Concentration
Using the traveling variable ξ = x− vs t in system (3), we obtain two cases:
If (−vsS

+
w + f+

w ) ̸= 0,

dSw

dξ
=

fw − f+
w + vs(S

+
w − Sw)

−δfwλg
dPc

dSw

,

dC

dξ
=

−α(Lϕ/u)(1− Sw)(Kg +Kd)(n
LE
D − nD)

(−vsS
+
w + f+

w )
,

−α(−vs(1− S+
w ) + (1− f+

w )) (nD − n+
D) = (−vsS

+
w + f+

w ) (C − C+),

(10)

If (−vsS
+
w + f+

w ) = 0, we obtain the first equation of (10) and the equations given in (11)

Kg (1− nD)Ψ(C)−Kd nD = 0, and nD = n+
D. (11)

The left and right states given in (6) become the left and right equilibria similarly to (8). Notice
that for the system (10), the formula for the velocity of the traveling wave is given by vs as
defined on the right-hand side of (9) i.e. vs = (f+

w − f−
w )/(S+

w − S−
w ).

For C− ̸= C+, the formula for the velocity of the traveling wave can be expressed in a
second way, independent of S−

w , as observed in [11]. This formulation is used when S−
w is not

determined.
By varying C− and C+, we observe that the velocity of the traveling wave vs changes, leading

to different possibilities for S−
w . Consequently, we classify the parameter space C−×C+, as shown

in Fig. 3a, based on the eigenvalues of the equilibria. For more details, see [11].
By abuse of notation, we define fw(Sw, C) := fw(Sw, n

LE
D (C)). Note that S−

w is determined by
the intersection of fw(Sw, C

−) and the purple line passing through the point (S+
w , f+

w ) with slope
vs, as shown in Fig. 3b-3c. The left equilibrium is found at this intersection, and other equilibria
are identified when they exist.

In regions R7 and D, S−
w is known, and we use the formula for vs given in (9). In other regions,

we use the alternative formula for vs (which is independent of S−
w ) to determine the S−

w of the left
equilibrium.

In regions R1, R2, R3, and R6, there are two possible left equilibria. In regions R4, R5, and T
(when C− < C+), no valid S−

w exists, and the left equilibrium does not exist. On curves L, N, and
T (when C− > C+), there is one possible left equilibrium. In region R7 and curve D, the point
(S−

w , C−
s ) is an equilibrium for all S−

w ∈ (Swc, 1− Sgr), similar to [12].
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(a) Classification of C− × C+. (b) Curve L. (c) Curve T with C+ < C−.

Figure 3: Classification of C− × C+ and intersection of fw(Sw, C
−) with vs line. Source: [11].
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4 Results and Comparative Analysis

4.1 First Order Kinetic (FOK) Model

Phase portrait analysis of system (7) for the FOK model reveals the existence of traveling wave
solutions in Regions II, III, and along Curve C (the red curve in Fig. 1(a)), which corresponds to
saddle-saddle connections between left states in Region VI and S+

w . The model exhibits signifi-
cant sensitivity to key parameters: small variations in Kc (order of 10−6) or S−

w (order of 10−2)
can produce solution divergences and lead to qualitatively different solutions, as reported in [5].
Comparative analysis shows excellent agreement with experimental (the predicted mobility decay
near S∗

w as in [8]) and numerical [7] studies.

4.2 Simplified Stochastic Bubble Population (SSBP) Model

The phase portrait analysis of system (7) for the SSBP model identifies traveling wave solutions
within Region I, where S−

w ∈]ST
w , S

+
w ], and ST

w denotes the intersection between the fw curve and
its tangent passing through (S+

w , f+
w ). Despite its simplified formulation, the SSBP model exhibits

good agreement with the complete SBP model and experimental CT scan data [9], particularly at
later times, highlighting its robustness and reduced sensitivity compared to the FOK model.

4.3 Foam Flow Model with Variable Surfactant Concentration

The variable surfactant model exhibits complex solution behavior across different regions (Fig. 3a):
while R1 and R7 (if C− = C+) admit traveling waves (consistent with SSBP model [12]), Curve
T (if C− > C+) reveals new regimes with higher velocities [11]. Novel solutions [11]: (i) in Region
R2, a traveling wave exists if the left equilibrium is a source, and (ii) along Curve D, the type of
solution depends on S−

w and C+.
This model provides a unified framework that encompasses both the SSBP and, under spe-

cial conditions, the FOK behavior. It offers a more realistic description for variable surfactant
concentration cases and aligns with the observed transition behaviors described in [11].

5 Conclusions

We studied different systems of partial differential equations that describe the foam displace-
ment in porous media, where the foam’s dynamic behavior is assumed to be Newtonian. For the
first two investigated models [5, 12], we fixed the surfactant concentration above the critical micelle
concentration. Both models present identical solutions for relatively high values of injected water
saturation. The second and third models [11, 12] possess similar solutions for all the values of
injected water saturation since the surfactant concentration at the injection and initial conditions
are equal. Hence, the solutions of all three models are similar for high values of injected water
saturation and the surfactant concentration above the critical micelle concentration. For small
values of injected water saturation, the models’ solutions have different behaviors. A significant
difference between these models is the influence of critical water saturation in the first model.
This influence can induce the presence of two types of structural instabilities close to this point.
Finally, from the third model, we noticed that the surfactant concentration significantly influences
the foam behavior.
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