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Resumo. Este trabalho apresenta a simulagido adaptativa de escoamentos transientes empregando-
se uma técnica multi-escalas para controlar o erro numérico da solugdo de forma continua. A
avaliacdo do erro é realizada de forma tensorial através de uma formulagdo baseada em métrica
Riemanniana onde as diferentes escalas do escoamento sdo capturadas através de consideragbes
sobre a avaliagdo da norma do erro. O tamanho da malha bem como sua orientagao sao controladas
pelos auto-valores e auto-vetores da métrica. Operagdes de refinamento, desrefinamento e suavizagao
da malha sdo empregados para distribuir uniformemente o erro de interpolagao ao longo do avango
da simulagdo. Exemplos de simulagoes adaptativas de escoamentos compressiveis transientes sdo
apresentadas para demonstrar a aplicabilidade do método, incluindo o escoamento transénico no
entorno da geometria de um aerof6lio e de um avido.
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1 Introducao

A adaptacgao de malhas visa remodelar automaticamente a discretizacao espacial do problema,
de forma a reduzir o esforco computacional e maximizar a precisao da solucdo obtida. E um tema
de grande importancia pois permite reduzir a magnitude do custo computacional de uma simula-
¢ao em uma ou varias ordens de grandeza. Intimeros problemas numéricos a serem solucionados
computacionalmente e com precisdo surgem das mais diversas aplicagdes. A adaptagdo de malhas
pode ser encontrada em problemas de mecanica de fluidos [3], mecanica dos solidos [10], cosmologia
[5], dentre tantas outras areas.

A adaptacao de malhas aplicada a problemas com efeitos multi-escalas transientes, como escoa-
mentos turbulentos ou compressiveis, possui algumas particularidades. A primeira é a presenga de
uma ampla variagao de escalas presentes no escoamento. Para detectar todas as escalas do escoa-
mento, pode-se empregar um escalonamento do erro [1]. Outra metodologia mais robusta consiste
em avaliar o erro na norma LP [3] através de uma métrica Riemanniana, permitindo que todas as
escalas sejam capturadas. Outra dificuldade reside no campo de solugao cujo erro sera avaliado.
Para problemas estacionérios, usualmente emprega-se uma variével escalar, como ntimero de Mach
local [4], mas esta escolha ndo é adequada para problemas multi-escalas transientes. Pode-se,
porém, aplicar interse¢coes de métricas para cobrir o erro de interpolagao de diversos campos de
solugao simultaneamente [1, 3].

Neste trabalho, um esquema de adaptacao anisotrépica de malhas nao-estruturadas é em-
pregado freqlientemente ao longo da simulacdo incluindo etapas de refinamento, desrefinamento,
alternancia de arestas e faces e suavizacao nodal para controlar o erro da solucdo numeérica do
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escoamento e o tamanho da malha. Efeitos multi-escalas no erro da solugao sao considerados via
avaliacao do erro na norma LP conjuntamente de interse¢oes de métricas de todos os campos de
solucao das variaveis de conservagao do escoamento. O Método dos Elementos Finitos é empregado
para solucionar numericamente escoamentos compressiveis. E demonstrada a aplicacio do esquema
para simular o martelamento transoénico no entorno de um aerofélio NACA-0012 e no entorno do
aviao civil CRM-NASA, determinando-se também propriedades aerodinamicas de interesse, como
coeficiente de sustentacgao.

2 Meétrica Riemanniana

Um espago métrico Euclidiano (R%, M) ¢ um espago vetorial finito onde o produto escalar
é definido através de uma matriz M simétrica positiva-definida chamada de tensor métrico ou
métrica de formato d X d, a qual define um produto escalar:

(u,v) ,, =u"Mv  para (u,v) € RY x R? (1)

Em um espago métrico Riemanniano, a métrica varia continuamente em todo o dominio §2.
Denota-se este espago por M = (M (x)), - Portanto, o cilculo de quantidades geométricas no
espago Riemanniano requer um procedimento de integracao para levar em consideragao a vari¢ao da
métrica. O comprimento de uma aresta ab, £ (ab), ¢ calculado através de integragao utilizando-se
uma parametrizagao do tipo v (t) = a + tab onde t € [0, 1], e vem dada por:

2y (ab)Z/O ||v’(t)||Mdt=/0 \/abTM(a—i—tab)ab dt (2)

enquanto o volume ou area orientada |K|,, de um dado elemento K vem dado por:

|K|M:/K\/det./\/l(x)dx (3)

A idéia central de uma adaptacao de malhas guiada pela utilizacao de métricas é de construir
uma malha na qual as arestas possuam comprimento tao mais préoximo de um valor prescrito quanto
possivel no espago métrico Riemanniano. Quanto mais proximo deste valor, mais bem distribuido
se econtrara o erro ao longo da malha. A qualidade de um elemento K pode ser monitorada através
de uma funcao de qualidade @ a¢, a qual combina informagoes tanto de comprimento quanto de
orientagao [2]:

(1) — 2 (Ax)

2/d (4)

Qm
| K[

Na Eq. (4), o numerador leva em considera¢ao o comprimento. Diminuindo-se o comprimento
das arestas calculadas no espago Riemanniano tem-se a dimuic¢ao do valor de Q@ »¢. O denominador
é uma medida da orientagao do elemento no espago Riemanniano, onde um elemento orientado
mais proximo dos auto-vetores da métrica da solugao local produz uma reducgao de Q4. Portanto,
minimizando-se @ a qualidade do elemento torna-se maximizada em um contexto anisotropico.

Do ponto de vista discreto, a métrica deve ser interpolada para que se possa calcular o compri-
mento das arestas e o volume ou area orientada no espago métrico Riemanniano. Considerando-se
uma interpolagao linear do tensor métrico, a integragao definida na Eq. (2) pode ser aproximada
por [4]:

202 + loly + 3

EM(ab)zg Z0+£1

(5)
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onde ¢; (ab) = /ab” M (x;)ab é o comprimento da aresta calculado na métrica M (x;) com
i = 0,1 para uma aresta com extremidades a e b, respectivamente. De forma similar, a integral
da Eq. (3) pode ser aproximada numericamente através de [4]:

k+1

K|y, ~ | det <ki1 ;M (x)> K| (6)

onde M, (x) representa a métrica em cada um dos i vértices do elemento K com &rea ou volume
orientado |K| no espago Euclidiano (k = 2 para um triangulo e k = 3 para um tetraedro).

A partir das propriedades que a matriz M apresenta (simétrica, positiva-definida), pode-se
reescrever M através de uma decomposicao espectral:

M =RART (7)

onde R é uma matriz ortonormal a qual satisfaz RTR = RRT = I;. A matriz R é composta pelos
auto-vetores associados & M e A é uma matriz diagonal composta pelos auto-valores associados a
M. Por ser positiva-definida, os auto-valores ();),_; ; sdo estritamente positivos.

3 Avaliacao do Erro

O erro Ey»(ab) estimado para uma aresta ab da malha é definido como o limite superior da
diferenca entre o valor de uma aproximagao quadréatica e o valor da fungao propriamente calculado
através de uma interpolagao linear medida em uma norma LP para uma dada fungao continua wu,
o qual pode ser expresso através de:

Ep»(ab) = £, (ab) (8)

com a métrica M (x) definida como o Hessiano normalizado da fungdo u calculado na norma L”
8] 1

M (x) = Myr (x) = (det [H|)">77 [H| (9)
onde H é uma matriz simétrica representando o Hessiano de u. Para garantir que H seja uma matriz
positiva-definida, o termo |H| é obtido como a matriz Hessiana com seus auto-valores normalizados

e limitados, tal que |H| = R‘[X‘RT, de forma que seus respectivos auto-valores limitados by que

compée |A| = diag (5\1) sejam [3]:

S\i:min<max<|)\i|’h21 >’h21 ) (10)

max min

sendo Amax € Amin 0 comprimento méaximo e minimo permitido para uma aresta pertencente & malha
e a matriz Hessiana calculada empregando-se uma formulagao variacional de dupla projecao.

Na Eq. (9), o ultimo termo |H| especifica a orientagao e anisotropia local do erro através de
uma matriz Hessiana normalizada da funcao u. Este é um resultado consistente com a teoria de
limites de erro de interpolagao para funcgoes polinomiais de Lagrange, a qual diz que um ponémio
interpolador para uma dada fungao gera um erro maximo de intepolagao de magnitude proporcional
a uma derivada de ordem imediatamente acima & do polindmio. Assim, com a utilizacao de uma
funcao linear de interpolagao de uma solugao tem-se um erro de interpolagao de ordem quadratica,
ou, em um espaco tridimensional, proporcional ao Hessiano da fungdo a ser interpolada. Além
disto, a limitagao imposta sobre os auto-valores através da Eq. (10) limita diretamente o tamanho
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das areastas para controlar o erro, sendo esta propriedade fundamental para evitar refinamentos
excessivos na simulagao de escoamentos transientes.

O primeiro termo escalar (det |H|)_ﬁ que aparece na Eq. (9) é resultado da medida a ser
realizada na norma LP, consistindo em uma medida de Lebesgue em uma espago de Sobolev. Desta
forma, a medida do erro considera as derivadas das func¢oes e ndo apenas a diferenca entre valores
de fungoes. Disto resulta que este termo modifica a estimativa do erro para levar em consideragao
a sensibilidade a norma L. Se p = 00, entdo Myr (x) = Mpe (x) = |H| e nenhuma sensibilidade
a norma LP? é levada em consideragao.

Estratégias de adaptagao de malha baseadas no controle do erro de interpolagao na norma L
falham em capturar pequenas variagoes presentes no campo de solucao que diferem das demais
por muitas ordens de grandeza. A anisotropia seria também perdida nas regides proximas a
descontinuidades. Portanto, controlar o erro na norma LP permite capturar todas as escalas do
campo de solugao, sendo, por isto, também chamado de uma abordagem multi-escalas. Para os
problemas envolvendo escoamentos com efeitos em diferentes escalas, o emprego da norma LP
permite capturar pequenas nuances tais como zonas de pequena recirculagao e camada limite
mesmo na presenga de efeitos mais fortes como ondas de choque. Tal procedimento estima o erro
de apenas uma varidvel u escolhida. A extensdo a um numero qualquer de varidveis pode ser
realizada através da intersecao de métricas de diferentes campos escalares.

Quando mais de uma métrica é especificada em um dado ponto, o procedimento de adaptagao
precisa cobrir o erro de interpolacao de todos estes campos ao mesmo tempo. Para isto, uma
técnica de redugao simultanea é empregada. Nesta abordagem, busca-se uma base comum P de
duas métricas M 4 e Mp, tal que elas sejam congruentes a uma matriz diagonal em suas bases.
A matriz B = M4 'Mp é introduzida, tal que B ¢ diagonalizavel com auto-valores reais. Os
auto-vetores normalizados de B sao e; com i = 1,d e compdem a base comum diagonalizivel P.
As componentes principais de M 4 e Mp projetadas nesta base podem ser obtidas com:

pi=e Mae; e B =el Mpe; (11)
Como P é também inversivel, a intersecao da métrica pode ser calculada através de:
_I\T . _
Manp = MaNMp = (P 1) diag (max (g, 3;)) P~ (12)

Para uma terceira métrica M¢ a ser interpolada, o procedimento é realizado da mesma forma,
com M apnc utilizando Mg = Manp e assim por diante para mais intersecoes de métricas. B
importante observar que quanto maior o namero de interse¢goes empregadas, menor sera a aniso-
tropia final da malha [1].

4 Simulagao Adaptativa de Escoamentos Transientes

O algoritmo geral de adaptacao de malhas implementado neste trabalho realiza a seguinte
seqiiéncia de modificagoes locais na malha, a qual define uma iteracdo de adaptacao:

1. Realizar suavizagao nodal;

2. Refinar todas as arestas cujo erro esteja acima de um dado limiar superior 7y ;
3. Alternar faces/arestas até a convergéncia;

4. Realizar suavizacao nodal;

5. Desrefinar todas as arestas cujo erro esteja abaixo de um dado limiar inferior 7y ;
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6. Alternar faces/arestas até a convergéncia;
7. Realizar suavizagao nodal.

A convergéncia da etapa de alternincia de faces ou arestas é obtida quando mais nenhuma
alternancia produz resultados benéficos para a qualidade da malha. Uma aresta ab é refinada se
Evr»(ab) > nuers e é desrefinada se Ere(ab) < nperr, onde epp» é 0 erro de interpolagdo objetivo
medido na norma LP. O valor dos limiares superiores e inferiores de erro, ny e 1y, sao tomados
como 1,4 e 0, 6, respectivamente [4]. O desrefinamento é realizado colapsando-se os dois vértices de
uma aresta para um ponto intermediario o qual minimiza o somatorio da Eq. (4) para os elementos
vizinhos & aresta desrefinada, sem violar a topologia da malha. De forma similar, a suavizagao
nodal também é realizada no sentido de minimizar a Eq. (4).

O algoritmo de adaptagao é acoplado a um algoritmo de simulagao de escoamentos compres-
siveis utilizando-se o Método dos Elementos Finitos para solugao das Equagoes de Navier-Stokes
[7]. As variaveis de conservacdo em tais escoamentos que devem ser controladas sdo p (massa
especifica), u; (componentes de velocidades) e E (energia total). Portanto, o campo escalar cujo
erro deve ser controlado é o campo obtido pela interseccao das métricas dos campos de variaveis
de conservagao do escoamento, isto é&: M(p) N M(u;) N M(E), o qual é calculado utilizando-se a
Eq. (11) conjuntamente da Eq. (12). Neste trabalho, a malha é adaptada a cada A« = 20 passos
executados do algoritmo de escoamento e o erro avaliado na norma L?. Os detalhes relacionados
a solugao do escoamento e modifica¢do local da malha podem ser encontrados em [7].

5 Aplicagao 1: Escoamento Transénico Laminar em Aerofélio

A simulagdo numérica bidimensional do escoamento transonico no entorno do aerofélio NACA-
0012 é realizada aqui para um angulo de ataque alto o = 9° e um ntmero de Mach de corrente-
livre Mo, = 0,80. O ntiimero de Reynolds de corrente-livre considerado é Reo, = 1 x 10%. Nestas
condigoes, tem-se uma camada limite laminar com formacgao de fortes interagoes entre a camada
limite e ondas de choque. Um comprimento de corda ¢ unitario é considerado em um dominio
circular com valor de raio 25¢. A densidade e velocidade de corrente-livre sdo tomadas como po, = 1
e Uy = 1, respectivamente. A simulacdo adaptativa é realizada considerando-se er2 = 0,02¢ e
hmin = 0,005¢ até o tempo adimensional final de valor 50.

A Fig. 1ilustra o escoamento desenvolvido e a respectiva malha adaptada. E possivel visualizar
as ondas de choque geradas pela separacao da camada limite tanto na porgao superior quanto
inferior do aerofdlio e a subseqiliente esteira de von Karméan. Fortes ondas de choque instéveis
também se formam e pequenas interagoes do tipo lambda surgem na porgao superior. Visualiza-se
também a malha adaptada conseguindo capturar adequadamente efeitos de diferentes escalas no
escoamento.

Este martelamento devido & variagao das ondas de choque pode ser também visualizado na
evolugdo temporal dos coeficientes aerodinAmicos de sustentagdo apresentado na Fig. 2. O valor
médio de coeficiente de sustentag@o obtido nesta simulagdo é 0,41, o qual oscila entre os valores de
0,36 e 0,48. A mesma simulagdo bidimensional foi realizada por [9] onde valores de coeficiente de
sustentagao oscilando entre 0, 22 e 0, 38 foram obtidos. Os resultados experimentais se apresentam,
em geral, também dispersos para esta faixa de altos angulo de ataque e nimero de Mach [6].

6 Aplicagao 2: Escoamento Turbulento Transénico em Aviao

Neste exemplo, emprega-se o algoritmo desenvolvido para simular o escoamento turbulento
transonico no entorno do avido Common Research Model (CRM-NASA) desenvolvido pela NASA
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(a) Magnitude do gradiente de massa es- (b) Malha adaptada
pecifica

Figura 1: Aplicacao 1: escoamento e respectiva malha adaptada. Fonte: dos autores.
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Figura 2: Aplicacao 1: coeficiente de sustentacao transiente. Fonte: dos autores.

em parceria com a empresa de aviagao Boeing, que consiste de uma asa supercritica com design
contemporaneo e uma fuselagem que é representativa de um avido comercial [11].

A simulacdo numérica do escoamento transdnico no entorno do avidao é realizada para um
grande angulo de ataque a = 30° e um ntmero de Mach de corrente-livre M., = 0,85. O namero
de Reynolds de corrente-livre considerado é Res, =5 x 10°. A densidade e velocidade de corrente-
livre sdo tomadas como po, = 1 € uy, = 1, respectivamente. A simulagao é realizada controlando-se
o erro com €12 = 0,001F e hyi, = 0,01F, onde E é o valor da envergadura das asas. A massa
especifica e a velocidade de corrente-livre de referéncia consideradas sdo, respectivamente, po, = 1
e Us = 1. A simulagdo é realizada até o tempo adimensional final de valor 10.

Nestas condigoes, tem-se uma grande separagao do escoamento, conforme é possivel observar
na Fig. 3, onde apresenta-se a magnitude do gradiente de massa especifica e a malha adaptada,
bem como a estrutura do escoamento.

(a) |Vpl (b) Malha (c) Vortices pelo critério Q

Figura 3: Aplicacdo 2: escoamento, malha e desprendimento de vortices. Fonte: dos autores.
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7 Consideragoes Finais

Uma técnica multi-escalas para controlar o erro adaptando malhas continuamente ao longo da

simulacdo de escoamentos foi apresentada. A técnica avalia o erro com uma estrutura mateméa-
tica de métrica Riemanniana, possibilitando a an&lise tensorial do erro com controle da direcao
(auto-vetores), tamanho (auto-valores) e diferentes escalas (norma do erro) do escoamento. Con-
juntamente de manipulagoes geométricas da malha como refinamento, desrefinamento e realocagao
nodal, esta técnica se mostra capaz de adaptar malhas amplificando a precisao da solugao ao menor
custo computacional. Exemplos de aplicagoes foram apresentados através da simulagoes do escoa-
mento transiente no entorno de um aerofolio e de geometria realista complexa de avido. Em ambos
os casos, efeitos de diferentes escalas no escoamento como recirculacgoes, turbuléncia, esteiras e
ondas de choque foram satisfatoriamente capturadas pela técnica adaptativa.

Referéncias

1

2]
3]

4]

[5]

[6]
7]

18]

19]

[10]

[11]

M. J. Castro-Diaz, F. Hecht, B. Mohammadi e O. Pironneau. “Anisotropic Unstructured
Mesh Adaption for Flow Simulations”. Em: International Journal for Numerical Methods
in Fluids Vol. 25.4 (1997), pp. 475-49.

A. Claisse, V. Ducrot e P. Frey. “Levelsets and anisotropic mesh adaptation”. Em: Discrete
and Continuous Dynamical Systems Vol. 23.1-2 (2009), pp. 165-183.

P. J. Frey e F. Alauzet. “Anisotropic mesh adaptation for CFD computations”. Em: Compu-
ter Methods in Applied Mechanics and Engineering Vol. 194.48-49 (2005), pp. 5068
5082.

W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin e M. G. Vallet.
“Anisotropic Mesh Adaptation: Towards User-Independent, Mesh-Independent and Solver
Independent CFD. Part I: General Principles”. Em: International Journal for Numerical
Methods in Fluids Vol. 32.6 (2000), pp. 725-744.

R. I. Klein. “Star Formation with 3-D Adaptive Mesh Refinement: The Collapse and Fragmen-
tation of Molecular Clouds”. Em: Journal of Computational and Applied Mathematics
Vol. 109.1-2 (1999), pp. 123-152.

B. H. K. Lee. “Transonic buffet on a supercritical aerofoil”. Em: The Aeronautical Journal
Vol. 94.935 (1990), pp. 143-152.

R. V. Linn e A. M. Awruch. “Adaptative finite element simulation of unsteady turbulent com-
pressible flows on unstructured meshes”. Em: Computers & Fluids 254 (2023), p. 105816.

A. Loseille e F. Alauzet. “Continuous Mesh Framework - Part I: Well-Posed Continuous In-
terpolation Error”. Em: STAM Journal on Numerical Analysis Vol. 49.1 (2011), pp. 38—
60.

R. F. B. Miserda, J. R. Jalowitzki, R. L. Queiroz e A. F. Mendongca. “Numerical simulation of
the laminar trasonic buffet in airfoils”. Em: Proceedings of the 10th Brazilian Congress
of Thermal Sciences and Engineering — ENCIT 2004. No. 10. Rio de Janeiro, Brasil,
2004, pp. 1-11.

E. Stein e W. Rust. “Mesh Adaptations for Linear 2d Finite-Element Discretizations in
Structural Mechanics, Especially in Thin Shell Analysis”. Em: Journal of Computational
and Applied Mathematics Vol. 36.1 (1991), pp. 107-129.

J. C. Vassberg, M. A. DeHaan, S. M. Rivers e R. A. Wahls. Development of a Common
Research Model for Applied CFD Validation Studies. Paper-6919. ATAA, 2008.

DOI: 10.5540/03.2026.012.01.0334 010334-7 © 2026 SBMAC


http://dx.doi.org/10.5540/03.2026.012.01.0334

