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Resumo. Este trabalho apresenta a simulação adaptativa de escoamentos transientes empregando-
se uma técnica multi-escalas para controlar o erro numérico da solução de forma contínua. A
avaliação do erro é realizada de forma tensorial através de uma formulação baseada em métrica
Riemanniana onde as diferentes escalas do escoamento são capturadas através de considerações
sobre a avaliação da norma do erro. O tamanho da malha bem como sua orientação são controladas
pelos auto-valores e auto-vetores da métrica. Operações de refinamento, desrefinamento e suavização
da malha são empregados para distribuir uniformemente o erro de interpolação ao longo do avanço
da simulação. Exemplos de simulações adaptativas de escoamentos compressíveis transientes são
apresentadas para demonstrar a aplicabilidade do método, incluindo o escoamento transônico no
entorno da geometria de um aerofólio e de um avião.
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1 Introdução
A adaptação de malhas visa remodelar automaticamente a discretização espacial do problema,

de forma a reduzir o esforço computacional e maximizar a precisão da solução obtida. É um tema
de grande importância pois permite reduzir a magnitude do custo computacional de uma simula-
ção em uma ou várias ordens de grandeza. Inúmeros problemas numéricos a serem solucionados
computacionalmente e com precisão surgem das mais diversas aplicações. A adaptação de malhas
pode ser encontrada em problemas de mecânica de fluidos [3], mecânica dos sólidos [10], cosmologia
[5], dentre tantas outras áreas.

A adaptação de malhas aplicada a problemas com efeitos multi-escalas transientes, como escoa-
mentos turbulentos ou compressíveis, possui algumas particularidades. A primeira é a presença de
uma ampla variação de escalas presentes no escoamento. Para detectar todas as escalas do escoa-
mento, pode-se empregar um escalonamento do erro [1]. Outra metodologia mais robusta consiste
em avaliar o erro na norma Lp [3] através de uma métrica Riemanniana, permitindo que todas as
escalas sejam capturadas. Outra dificuldade reside no campo de solução cujo erro será avaliado.
Para problemas estacionários, usualmente emprega-se uma variável escalar, como número de Mach
local [4], mas esta escolha não é adequada para problemas multi-escalas transientes. Pode-se,
porém, aplicar interseções de métricas para cobrir o erro de interpolação de diversos campos de
solução simultaneamente [1, 3].

Neste trabalho, um esquema de adaptação anisotrópica de malhas não-estruturadas é em-
pregado freqüentemente ao longo da simulação incluindo etapas de refinamento, desrefinamento,
alternância de arestas e faces e suavização nodal para controlar o erro da solução numérica do
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escoamento e o tamanho da malha. Efeitos multi-escalas no erro da solução são considerados via
avaliação do erro na norma Lp conjuntamente de interseções de métricas de todos os campos de
solução das variáveis de conservação do escoamento. O Método dos Elementos Finitos é empregado
para solucionar numericamente escoamentos compressíveis. É demonstrada a aplicação do esquema
para simular o martelamento transônico no entorno de um aerofólio NACA-0012 e no entorno do
avião civil CRM-NASA, determinando-se também propriedades aerodinâmicas de interesse, como
coeficiente de sustentação.

2 Métrica Riemanniana

Um espaço métrico Euclidiano
(
Rd,M

)
é um espaço vetorial finito onde o produto escalar

é definido através de uma matriz M simétrica positiva-definida chamada de tensor métrico ou
métrica de formato d× d, a qual define um produto escalar:

⟨u,v⟩M = uTMv para (u,v) ∈ Rd × Rd (1)

Em um espaço métrico Riemanniano, a métrica varia continuamente em todo o domínio Ω.
Denota-se este espaço por M = (M (x))x∈Ω. Portanto, o cálculo de quantidades geométricas no
espaço Riemanniano requer um procedimento de integração para levar em consideração a varição da
métrica. O comprimento de uma aresta ab, ℓM (ab), é calculado através de integração utilizando-se
uma parametrização do tipo γ (t) = a+ tab onde t ∈ [0, 1], e vem dada por:

ℓM (ab) =

∫ 1

0

∥γ′ (t)∥
M
dt =

∫ 1

0

√
abTM (a+ t ab)ab dt (2)

enquanto o volume ou área orientada |K|M de um dado elemento K vem dado por:

|K|M =

∫
K

√
detM (x)dx (3)

A idéia central de uma adaptação de malhas guiada pela utilização de métricas é de construir
uma malha na qual as arestas possuam comprimento tão mais próximo de um valor prescrito quanto
possível no espaço métrico Riemanniano. Quanto mais próximo deste valor, mais bem distribuído
se econtrará o erro ao longo da malha. A qualidade de um elemento K pode ser monitorada através
de uma função de qualidade QM, a qual combina informações tanto de comprimento quanto de
orientação [2]:

QM (K) =

∑
ℓ2M (AK)

|K|2/dM

(4)

Na Eq. (4), o numerador leva em consideração o comprimento. Diminuindo-se o comprimento
das arestas calculadas no espaço Riemanniano tem-se a dimuição do valor de QM. O denominador
é uma medida da orientação do elemento no espaço Riemanniano, onde um elemento orientado
mais próximo dos auto-vetores da métrica da solução local produz uma redução de QM. Portanto,
minimizando-se QM a qualidade do elemento torna-se maximizada em um contexto anisotrópico.

Do ponto de vista discreto, a métrica deve ser interpolada para que se possa calcular o compri-
mento das arestas e o volume ou área orientada no espaço métrico Riemanniano. Considerando-se
uma interpolação linear do tensor métrico, a integração definida na Eq. (2) pode ser aproximada
por [4]:

ℓM (ab) ≈ 2

3

ℓ20 + ℓ0ℓ1 + ℓ21
ℓ0 + ℓ1

(5)

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0334 010334-2 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0334


3

onde ℓi (ab) =
√
abTM (xi)ab é o comprimento da aresta calculado na métrica M (xi) com

i = 0, 1 para uma aresta com extremidades a e b, respectivamente. De forma similar, a integral
da Eq. (3) pode ser aproximada numericamente através de [4]:

|K|M ≈

√√√√det

(
1

k + 1

k+1∑
i=1

Mi (x)

)
|K| (6)

onde Mi (x) representa a métrica em cada um dos i vértices do elemento K com área ou volume
orientado |K| no espaço Euclidiano (k = 2 para um triângulo e k = 3 para um tetraedro).

A partir das propriedades que a matriz M apresenta (simétrica, positiva-definida), pode-se
reescrever M através de uma decomposição espectral:

M = RΛRT (7)

onde R é uma matriz ortonormal a qual satisfaz RTR = RRT = Id. A matriz R é composta pelos
auto-vetores associados à M e Λ é uma matriz diagonal composta pelos auto-valores associados à
M. Por ser positiva-definida, os auto-valores (λi)i=1,d são estritamente positivos.

3 Avaliação do Erro
O erro ELp(ab) estimado para uma aresta ab da malha é definido como o limite superior da

diferença entre o valor de uma aproximação quadrática e o valor da função propriamente calculado
através de uma interpolação linear medida em uma norma Lp para uma dada função contínua u,
o qual pode ser expresso através de:

ELp(ab) ≡ ℓM (ab) (8)

com a métrica M (x) definida como o Hessiano normalizado da função u calculado na norma Lp

[8]:
M (x) = MLp (x) = (det |H|)−

1
2p+d |H| (9)

onde H é uma matriz simétrica representando o Hessiano de u. Para garantir que H seja uma matriz
positiva-definida, o termo |H| é obtido como a matriz Hessiana com seus auto-valores normalizados
e limitados, tal que |H| = R

∣∣∣Λ̃∣∣∣RT , de forma que seus respectivos auto-valores limitados λ̃i que

compõe |Λ̃| = diag
(
λ̃i

)
sejam [3]:

λ̃i = min

(
max

(
|λi|,

1

h2
max

)
,

1

h2
min

)
(10)

sendo hmax e hmin o comprimento máximo e mínimo permitido para uma aresta pertencente à malha
e a matriz Hessiana calculada empregando-se uma formulação variacional de dupla projeção.

Na Eq. (9), o último termo |H| especifica a orientação e anisotropia local do erro através de
uma matriz Hessiana normalizada da função u. Este é um resultado consistente com a teoria de
limites de erro de interpolação para funções polinomiais de Lagrange, a qual diz que um ponômio
interpolador para uma dada função gera um erro máximo de intepolação de magnitude proporcional
a uma derivada de ordem imediatamente acima à do polinômio. Assim, com a utilização de uma
função linear de interpolação de uma solução tem-se um erro de interpolação de ordem quadrática,
ou, em um espaço tridimensional, proporcional ao Hessiano da função a ser interpolada. Além
disto, a limitação imposta sobre os auto-valores através da Eq. (10) limita diretamente o tamanho

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 12, n. 1, 2026.

DOI: 10.5540/03.2026.012.01.0334 010334-3 © 2026 SBMAC

http://dx.doi.org/10.5540/03.2026.012.01.0334


4

das areastas para controlar o erro, sendo esta propriedade fundamental para evitar refinamentos
excessivos na simulação de escoamentos transientes.

O primeiro termo escalar (det |H|)−
1

2p+d que aparece na Eq. (9) é resultado da medida a ser
realizada na norma Lp, consistindo em uma medida de Lebesgue em uma espaço de Sobolev. Desta
forma, a medida do erro considera as derivadas das funções e não apenas a diferença entre valores
de funções. Disto resulta que este termo modifica a estimativa do erro para levar em consideração
a sensibilidade à norma Lp. Se p = ∞, então MLp (x) = ML∞ (x) = |H| e nenhuma sensibilidade
à norma Lp é levada em consideração.

Estratégias de adaptação de malha baseadas no controle do erro de interpolação na norma L∞

falham em capturar pequenas variações presentes no campo de solução que diferem das demais
por muitas ordens de grandeza. A anisotropia seria também perdida nas regiões próximas a
descontinuidades. Portanto, controlar o erro na norma Lp permite capturar todas as escalas do
campo de solução, sendo, por isto, também chamado de uma abordagem multi-escalas. Para os
problemas envolvendo escoamentos com efeitos em diferentes escalas, o emprego da norma Lp

permite capturar pequenas nuances tais como zonas de pequena recirculação e camada limite
mesmo na presença de efeitos mais fortes como ondas de choque. Tal procedimento estima o erro
de apenas uma variável u escolhida. A extensão a um número qualquer de variáveis pode ser
realizada através da interseção de métricas de diferentes campos escalares.

Quando mais de uma métrica é especificada em um dado ponto, o procedimento de adaptação
precisa cobrir o erro de interpolação de todos estes campos ao mesmo tempo. Para isto, uma
técnica de redução simultânea é empregada. Nesta abordagem, busca-se uma base comum P de
duas métricas MA e MB , tal que elas sejam congruentes a uma matriz diagonal em suas bases.
A matriz B = MA

−1MB é introduzida, tal que B é diagonalizável com auto-valores reais. Os
auto-vetores normalizados de B são ei com i = 1, d e compõem a base comum diagonalizável P.
As componentes principais de MA e MB projetadas nesta base podem ser obtidas com:

µi = eTi MAei e βi = eTi MBei (11)

Como P é também inversível, a interseção da métrica pode ser calculada através de:

MA∩B = MA ∩MB =
(
P−1

)Tdiag (max (µi, βi))P−1 (12)

Para uma terceira métrica MC a ser interpolada, o procedimento é realizado da mesma forma,
com MAB∩C utilizando MAB = MA∩B e assim por diante para mais interseções de métricas. É
importante observar que quanto maior o número de interseções empregadas, menor será a aniso-
tropia final da malha [1].

4 Simulação Adaptativa de Escoamentos Transientes
O algoritmo geral de adaptação de malhas implementado neste trabalho realiza a seguinte

seqüência de modificações locais na malha, a qual define uma iteração de adaptação:

1. Realizar suavização nodal;

2. Refinar todas as arestas cujo erro esteja acima de um dado limiar superior ηU ;

3. Alternar faces/arestas até a convergência;

4. Realizar suavização nodal;

5. Desrefinar todas as arestas cujo erro esteja abaixo de um dado limiar inferior ηL;
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6. Alternar faces/arestas até a convergência;

7. Realizar suavização nodal.

A convergência da etapa de alternância de faces ou arestas é obtida quando mais nenhuma
alternância produz resultados benéficos para a qualidade da malha. Uma aresta ab é refinada se
ELp(ab) ≥ ηUεLp e é desrefinada se ELp(ab) ≤ ηLεLp , onde εLp é o erro de interpolação objetivo
medido na norma Lp. O valor dos limiares superiores e inferiores de erro, ηU e ηL, são tomados
como 1, 4 e 0, 6, respectivamente [4]. O desrefinamento é realizado colapsando-se os dois vértices de
uma aresta para um ponto intermediário o qual minimiza o somatório da Eq. (4) para os elementos
vizinhos à aresta desrefinada, sem violar a topologia da malha. De forma similar, a suavização
nodal também é realizada no sentido de minimizar a Eq. (4).

O algoritmo de adaptação é acoplado a um algoritmo de simulação de escoamentos compres-
síveis utilizando-se o Método dos Elementos Finitos para solução das Equações de Navier-Stokes
[7]. As variáveis de conservação em tais escoamentos que devem ser controladas são ρ (massa
específica), ui (componentes de velocidades) e E (energia total). Portanto, o campo escalar cujo
erro deve ser controlado é o campo obtido pela intersecção das métricas dos campos de variáveis
de conservação do escoamento, isto é: M(ρ) ∩M(ui) ∩M(E), o qual é calculado utilizando-se a
Eq. (11) conjuntamente da Eq. (12). Neste trabalho, a malha é adaptada a cada ∆α = 20 passos
executados do algoritmo de escoamento e o erro avaliado na norma L2. Os detalhes relacionados
à solução do escoamento e modificação local da malha podem ser encontrados em [7].

5 Aplicação 1: Escoamento Transônico Laminar em Aerofólio

A simulação numérica bidimensional do escoamento transônico no entorno do aerofólio NACA-
0012 é realizada aqui para um ângulo de ataque alto α = 9o e um número de Mach de corrente-
livre M∞ = 0, 80. O número de Reynolds de corrente-livre considerado é Re∞ = 1 × 104. Nestas
condições, tem-se uma camada limite laminar com formação de fortes interações entre a camada
limite e ondas de choque. Um comprimento de corda c unitário é considerado em um domínio
circular com valor de raio 25c. A densidade e velocidade de corrente-livre são tomadas como ρ∞ = 1
e u∞ = 1, respectivamente. A simulação adaptativa é realizada considerando-se εL2 = 0, 02c e
hmin = 0, 005c até o tempo adimensional final de valor 50.

A Fig. 1 ilustra o escoamento desenvolvido e a respectiva malha adaptada. É possível visualizar
as ondas de choque geradas pela separação da camada limite tanto na porção superior quanto
inferior do aerofólio e a subseqüente esteira de vón Kármán. Fortes ondas de choque instáveis
também se formam e pequenas interações do tipo lambda surgem na porção superior. Visualiza-se
também a malha adaptada conseguindo capturar adequadamente efeitos de diferentes escalas no
escoamento.

Este martelamento devido à variação das ondas de choque pode ser também visualizado na
evolução temporal dos coeficientes aerodinâmicos de sustentação apresentado na Fig. 2. O valor
médio de coeficiente de sustentação obtido nesta simulação é 0, 41, o qual oscila entre os valores de
0, 36 e 0, 48. A mesma simulação bidimensional foi realizada por [9] onde valores de coeficiente de
sustentação oscilando entre 0, 22 e 0, 38 foram obtidos. Os resultados experimentais se apresentam,
em geral, também dispersos para esta faixa de altos ângulo de ataque e número de Mach [6].

6 Aplicação 2: Escoamento Turbulento Transônico em Avião

Neste exemplo, emprega-se o algoritmo desenvolvido para simular o escoamento turbulento
transônico no entorno do avião Common Research Model (CRM-NASA) desenvolvido pela NASA
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(a) Magnitude do gradiente de massa es-
pecífica

(b) Malha adaptada

Figura 1: Aplicação 1: escoamento e respectiva malha adaptada. Fonte: dos autores.

Figura 2: Aplicação 1: coeficiente de sustentação transiente. Fonte: dos autores.

em parceria com a empresa de aviação Boeing, que consiste de uma asa supercrítica com design
contemporâneo e uma fuselagem que é representativa de um avião comercial [11].

A simulação numérica do escoamento transônico no entorno do avião é realizada para um
grande ângulo de ataque α = 30o e um número de Mach de corrente-livre M∞ = 0, 85. O número
de Reynolds de corrente-livre considerado é Re∞ = 5× 106. A densidade e velocidade de corrente-
livre são tomadas como ρ∞ = 1 e u∞ = 1, respectivamente. A simulação é realizada controlando-se
o erro com εL2 = 0, 001E e hmin = 0, 01E, onde E é o valor da envergadura das asas. A massa
específica e a velocidade de corrente-livre de referência consideradas são, respectivamente, ρ∞ = 1
e u∞ = 1. A simulação é realizada até o tempo adimensional final de valor 10.

Nestas condições, tem-se uma grande separação do escoamento, conforme é possível observar
na Fig. 3, onde apresenta-se a magnitude do gradiente de massa específica e a malha adaptada,
bem como a estrutura do escoamento.

(a) |∇ρ| (b) Malha (c) Vórtices pelo critério Q

Figura 3: Aplicação 2: escoamento, malha e desprendimento de vórtices. Fonte: dos autores.
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7 Considerações Finais
Uma técnica multi-escalas para controlar o erro adaptando malhas continuamente ao longo da

simulação de escoamentos foi apresentada. A técnica avalia o erro com uma estrutura matemá-
tica de métrica Riemanniana, possibilitando a análise tensorial do erro com controle da direção
(auto-vetores), tamanho (auto-valores) e diferentes escalas (norma do erro) do escoamento. Con-
juntamente de manipulações geométricas da malha como refinamento, desrefinamento e realocação
nodal, esta técnica se mostra capaz de adaptar malhas amplificando a precisão da solução ao menor
custo computacional. Exemplos de aplicações foram apresentados através da simulações do escoa-
mento transiente no entorno de um aerofólio e de geometria realista complexa de avião. Em ambos
os casos, efeitos de diferentes escalas no escoamento como recirculações, turbulência, esteiras e
ondas de choque foram satisfatoriamente capturadas pela técnica adaptativa.
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