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Resumo. Em computagio de alto desempenho (HPC), a solugao eficiente de grandes sistemas
lineares esparsos é fundamental, sendo os métodos iterativos a escolha predominante, cuja perfor-
mance esta ligada ao precondicionador escolhido. Apresentamos uma representacio da esparsidade
de matrizes por meio de imagens RGB. Utilizando uma rede neural convolucional (CNN), a tarefa
de selegdo do precondicionador se transforma em um problema de classificacdo multi-classe. Testes
com 126 matrizes da colegdo SuiteSparse enfatizam a adequagdo do modelo CNN, observando um
aumento de 32% na acurécia e uma redugao de 25% no tempo de execugao.

Palavras-chave. computagio de alto desempenho (HPC), sistemas lineares esparsos, métodos
iterativos, escolha de precondicionadores, rede neural convolucional, classificacdo multi-classe.

1 Introducao

Os métodos de Krylov sao os solvers lineares preferidos para simulagoes numéricas em, por
exemplo, engenharia de reservatorios que exigem a solugao de grandes sistemas lineares com ma-
trizes esparsas [5]. No entanto, seu sucesso depende da escolha de um precondicionador adequado
[14]. Discutiremos uma técnica para representar graficamente propriedades estruturais ou mate-
maéticas das matrizes esparsas envolvidas na escolha de precondicionadores. Esta representagao
deve ser escalavel e, para grandes sistemas esparsos, o ideal é que a complexidade computacional
seja linear em relacao ao numero de elementos nao nulos.

Entre os atributos da matriz, devemos destacar a ordem, seus autovalores e valores singulares, o
nimero de condicionamento, o padrao de esparsidade, a densidade e a dominancia diagonal, entre
outros. Com a excegao do padrao de esparsidade, esses atributos sao numéricos. A esparsidade
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encapsula atributos topoldgicos sobre a conexao entre os elementos nao nulos da matriz. Embora
nao seja o unico fator determinante, o padrao de esparsidade afeta o nivel de paralelismo possivel
tanto na aplica¢do quanto na construgao de precondicionadores como ILU(k) [14].

Exploramos algumas técnicas de aprendizagem profunda (AP) para obter automaticamente
representacoes compactas de matrizes esparsas para selecionar precondicionadores. Ampliando a
abordagem de Yamada et al. [16], usamos imagens RGB para codificar espacialmente os padroes de
esparsidade. Diferentemente do trabalho de Yamada, nossa metodologia incorpora a classificacao de
varios rotulos para identificar uma gama de precondicionadores adequados para uma determinada
matriz esparsa. Para processar as representagoes baseadas em imagens, empregamos uma rede
neural convolucional (CNN) [10]. Ha varios trabalhos que utilizam AP para tratar problemas em
algebra linear computacional, por exemplo [1, 3, 6], para maiores detalhes, ver [15].

Nossas contribuicoes sao as seguintes: adotamos um modelo multi-rétulo para a selecao de
diversos precondicionadores para uma tnica matriz, lidando melhor com casos em que vérios pre-
condicionadores tém desempenhos semelhantes; comparamos modelos baseados em atributos nu-
méricos com modelos baseados em imagens. Os modelos baseados em imagens superam os modelos
baseados em dados numéricos, com uma probabilidade 32% maior de sugestdo de precondicionador
ideal e uma chance 26% maior de baixo impacto computacional.

Este texto resume alguns dos resultados de um trabalho em desenvolvimento cuja versao inicial
se encontra disponivel em [15]; varios detalhes omitidos aqui, devido ao limite do nimero de
péginas, podem ser encontrados nesse trabalho. O restante deste artigo esta assim estruturado: a
Segao 2 descreve a metodologia, a Segao 3 discute os resultados numeéricos e a Secao 4 conclui o
artigo, destacando sua importancia e sugerindo futuras direcoes de pesquisa.

2 Metodologia

Propomos codificar a esparsidade da matriz e alguns atributos facilmente computaveis através
de uma imagem RGB. Realizamos experimentos comparando modelos de AP treinados em atributos
numéricos da matriz com aqueles treinados em imagens. Empregamos 126 matrizes simétricas,
positivo-definidas (SPD) e nao diagonais da cole¢ao de matrizes SuiteSparse[8].

Utilizamos um conjunto usual de parametros escalares para caracterizar as matrizes: densidade,
nimero de linhas, nimero de elementos nao nulos, nimero médio de elementos nao nulos por linha,
condicionamento, autovalores extremos, total de linhas com diagonal dominancia e razao minima
entre o valor absoluto do elemento diagonal e a soma das entradas nao diagonais. Entre esses
pardmetros, o numero da condicionamento e os autovalores foram calculados usando o MATLAB.
Embora o nimero de condicionamento de uma matriz SPD seja definido por seus autovalores
extremos, os atributos que empregamos sao estimativas, o que os torna nao redundantes.

Para representar visualmente as propriedade da matriz, criamos um conjunto de dados de
imagem com base no método proposto por Yamada et al. [16]. Cada matriz A é particionada em
blocos A;; de dimensao b ~ N/m, em que N ¢é a dimensdo da matriz e m é a resolucao da imagem.
Esses blocos sao representados como pixels p;; em uma imagem de m X m pixels. Geramos quatro
conjuntos de imagens com m € {32,64, 128,256}.

Cada pixel p;; consiste em trés componentes alinhados com os canais RGB: vermelho, verde e
azul. O canal vermelho captura a magnitude dos elementos diferentes de zero no bloco da matriz, o
azul incorpora as dimensoes da matriz e o verde transmite a densidade do bloco. Como resultado,
as caracteristicas distintas de cada matriz sao visualmente representadas, com os atributos de cada
bloco influenciando a cor do pixel correspondente.

A Figura 1 ilustra a conversdo de uma matriz 20 x 20 em uma imagem de 5 x 5 pixels. Aqui,
cada pixel na imagem corresponde a um bloco de 4 x 4 da matriz.

A representacao da esparsidade como imagens captura naturalmente as informacoes topologicas,
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Figura 1: Representacao de matriz 20 x 20 em blocos 5 x 5. Fonte: Os autores.

codificando-as em relagbes geométricas, que sao mais dificeis de serem obtidas com representagoes
escalares. Esse processo gerou quatro conjuntos de atributos escalares estendidos, correspondentes
a cada m € {32,64,128,256}. Para gerenciar o aumento da dimensionalidade e reter os aspectos
mais informativos, usamos a anélise de componentes principais (PCA), capturando 99% da variagao
nos dados [7].

Consideramos dez precondicionadores: Fatoragdo LU Incompleta com niveis 0 (ILU-0) e 1 (ILU-
1), Bloco Jacobi (BJACOBI), Sobrerelaxagio Sucessiva (SOR), Point Block Jacobi (PBJACOBI),
Multigrid (MG), Jacobi (JACOBI), Fatoragdo Incompleta de Cholesky (ICC), Multigrid Algé-
brico Geométrico (GAMG), Eisenstat (EISENSTAT). Estes precondicionadores estao disponiveis
no PETSc [2] e foram acessados empregando-se a opgao -pc com os seus respectivos valores default.
Geramos dez sistemas lineares aleatorios para cada matriz. Os vetores solugao z* foram extraidos
de uma distribuicdo normal padrao e os vetores do lado direito foram calculados como b = Ax*.
Em seguida, resolvemos cada sistema usando o método de Gradiente Conjugado Precondicionado
(PCG) [14].

Para cada sistema linear e precondicionador, executamos o método PCG cinco vezes, calculamos
o tempo mediano de resolugao e somamos esses tempos medianos de todos os dez sistemas para
cada precondicionador.

Algumas configuragoes nao convergiram para solugoes aceitaveis em tempo habil. Para compa-
tibilizar as medidas de performance, utilizamos o residuo e o erro relativos. Seja & o vetor solugao
estimado para o sistema Ax = b. Neste caso, o residuo e o erro relativos sdo, respectivamente:

Az b,
@ =l

Definimos um par (matriz, precondicionador) como vidvel se, em todos os 10 sistemas lineares,
tivermos r(Z) < 0,01, e(Z) < 0,1 e o tempo total para obtencdo das solugdes for inferior a um
minuto. Cada par que nao atendeu a essas condigoes foi rotulado como invidvel. Com esse limite
de tempo (um minuto), todas as matrizes obtiveram pelo menos um resolvedor viavel.

Para cada matriz A e precondicionador P, diremos que P é um precondicionador étimo se (A, P)
for viavel e seu tempo de execugao for, no maximo, 10% mais lento que o precondicionador viavel
mais rapido para a mesma matriz. Esta defini¢do resultou em 126 conjuntos de precondicionadores
6timos, um conjunto por matriz.

Definimos o problema de selecao de precondicionadores como uma tarefa de classificagao multi-
rotulo, onde a entrada sao os atributos da matriz e a saida é um conjunto de precondicionadores
otimos. Consideramos dois tipos de dados de entrada: propriedades escalares e dados de imagem.
Usamos as seguintes bibliotecas para implementar os modelos de AP: scikit-learn, TensorFlow e
Keras [4, 11, 12].

Aplicamos os seguintes classificadores ao conjunto de dados de propriedades escalares: Logistic
Regression, Support Vector Classifier (SVC), Decision Tree, Random Forest, Gradient Boosting, K-
Nearest Neighbors, Multi-layer Perceptron (MLP) e Gaussian Naive Bayes (GNB) — a descrigao

I P

e(z) = ,x* #£ 0. (1)

llz*]2
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Figura 2: Arquitetura de Rede Neural Convolucional. Fonte: Os autores.

desses métodos esta fora do escopo deste artigo, ver [9] para detalhes. Cada classificador foi
utilizado com seus parametros default.

Para as imagens RGB, empregamos uma CNN [13] com a seguinte arquitetura: uma camada
de entrada, que aceita os dados da imagem, aplica uma operacao de convolugao e uma fungao
de ativagdo de Unidade Linear Retificada (ReLU) para introduzir nado linearidade no modelo;
a camada subsequente é um pooling maximo com uma operacao 2 X 2 na saida da camada de
entrada; agora temos outra convolucao; uma outra camada de pooling maximo reduzindo ainda
mais as dimensoes do mapa de atributos; uma camada para o achatamento, o mapa de atributos
resultante torna-se um vetor 1D; uma camada totalmente conectada consistindo em 128 neurénios
e usando a func¢ao de ativagao ReLLU que aceita a saida achatada da camada anterior; uma camada
de dropout para evitar overfitting, desconsiderando aleatoriamente 50% dos neurénios da camada
anterior; finalmente, a camada de saida emprega uma funcao de ativacao sigmoide para produzir
a saida final do modelo, o niumero de neurénios nesta camada corresponde ao numero de classes
(precondicionadores) no conjunto de dados. A Figura 2 apresenta uma representacgio grafica desta
arquitetura CNN.

Algoritmos de classificagdo multi-rotulos podem produzir um conjunto vazio de rétulos (precon-
dicionadores) como saida. Nesses casos, adotamos a alternativa de selecionar o precondicionador
mais frequente no conjunto de dados, ou seja, ILU-1. Esta alternativa seria uma escolha natural
para um usuario sem informacoes adicionais.

3 Resultados

O ambiente computacional foi um processador Intel(R) Xeon(R) CPU E5-2650 v2 @ 2,60GHz
com 64GB de RAM, rodando Debian GNU/Linux 11 e C++ compilado com GNU g++ (De-
bian 10.2.1-6) com diretivas: -std=c++17 -O3 -Irt -fPIC -m64 -march=nativo -mtune=nativo
-fopenmp-simd; PETSc compilado com mpicxx no GNU g++ (Debian 3.3.1-5). Testes executados
sequencialmente com uma tnica thread e um processo MPI. TensorFlow (2.12.0) e scikit-learn
(1.2.2) [11, 12] forneceram o ambiente de AP.

Avaliamos nossos modelos usando duas métricas: acurécia e desaceleracdo. A acuracia mede
a proporcao de precondicionadores 6timos previstos corretamente. Para a matriz ¢, onde Y; é o

conjunto de precondicionadores 6timos e Y;; os precondicionadores previstos pelo modelo j. A
YiﬁYL‘j

acuracia é dada por: . A desaceleragao ¢é a razao entre o tempo de execucao do precon-

i
dicionador mais rapido previsto pelo modelo e o tempo de execugao do precondicionador 6timo
mais répido. Para a matriz ¢ e o modelo j, t;;z é o tempo de execugao do precondicionador
k previsto pelo modelo j, e t7 ¢ o tempo de execugdo do precondicionador 6timo mais réapido,
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desaceleragao,; = %t”‘ Essas métricas sao complementares: a desaceleragao considera apenas
o melhor precondicionédor previsto, enquanto a acuracia penaliza os modelos que preveem muitos
precondicionadores nao ideais. Usamos uma divisao de treinamento-teste de 80%-20% e repetimos
cada ciclo de treinamento-teste-avaliacao 30 vezes objetivando resultados confidveis e atenuando a
tendéncia de qualquer particao de dados tnica.

A Tabela 1 apresenta a probabilidade de cada classificador obter acurécia perfeita (P(acuracia =
1)) e desaceleragao aceitavel (P(desaceleracao < 1,5)). Também mostra a quantidade de precon-
dicionadores 6timos previstos. O MLP obteve a maior probabilidade de acuracia perfeita, 0,57,
enquanto o GNB apresentou a maior probabilidade de desaceleragao aceitavel, 0,79. O nitmero
médio de precondicionadores ideais por matriz é de 1,29. O GNB prevé uma média de 4,9 precon-
dicionadores por matriz; esta previsao excessiva reduz sua acuracia, embora capture o precondici-
onador ideal. MLP , SVC, Random Forest e K-Nearest Neighbors demonstram um desempenho
mais equilibrado, com probabilidades de acurécia acima de 0,55 e probabilidades de desaceleragao
acima de 0,6.

Tabela 1: Acuracia e a desaceleragao para classificadores escalares. Precondicionadores previstos.

Classificador P(acur. =1) P(desac. < 1.5) Previstos
MLP 0,57 0,69 1,07
SvC 0,56 0,64 1,00
Random Forest 0,55 0,70 1,13
K-Nearest Neighbors 0,55 0,66 1,05
Logistic Regression 0,48 0,61 1,10
Gradient Boosting 0,47 0,68 1,29
Decision Tree 0,39 0,69 1,49
Gaussian Naive Bayes 0,05 0,79 491

Avaliamos CNNs em imagens matriciais com quatro resolugoes diferentes: 32x32, 64x64,
128x 128 e 256 x 256 pixels, denotados como CNN_32, CNN_64, CNN_128 e CNN_256, respectivamente.

Conforme mostrado na Tabela 2, os modelos CNN tém desempenho excepcional. O CNN_256
obteve a maior probabilidade de precisao perfeita com 0,89. Em termos de métricas de desacele-
ragao, tanto o CNN_256 quanto o CNN_128 mantiveram uma probabilidade de 0,94 de atingir um
fator de desaceleragao abaixo de 1,5. Embora o desempenho geralmente melhore com o aumento
da resolugao da imagem, os ganhos diminuem além de 128128 pixels, sugerindo que imagens de
altissima resolugao podem nao oferecer beneficios adicionais.

Tabela 2: Acuracia e desacelerac¢do para classificadores baseados em imagem.

Classificador ~ P(acuracia = 1) P(desaceleragao < 1.5)

CNN_ 256 0,89 0,94
CNN_ 128 0,88 0,94
CNN_ 64 0,86 0,93
CNN_ 32 0,82 0,89

Finalmente, comparamos os modelos de melhor desempenho dos métodos escalares e baseados
em imagem. Como linha de base, incluimos um classificador de referéncia que sempre seleciona o
precondicionador que ocorre com mais frequéncia no conjunto de dados (ILU-1). Como a Tabela 3
indica, os modelos CNN superam o desempenho do modelo de referéncia e dos modelos baseados
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em escalares. O modelo CNN_256 obteve uma probabilidade 32% maior de precisido perfeita em
comparacao com o melhor modelo baseado em parimetros escalares e uma melhoria de 24% em
relagdo ao ILU-1 puro. Os modelos CNN apresentaram vantagem na manutencao de desaceleragao
aceitavel. Esses resultados indicam, sobre este conjunto de matrizes, que as representagoes baseadas
em imagem dos padroes de esparsidade da matriz capturam informagoes mais relevantes para a
selegao do precondicionador do que os modelos baseados em parédmetros escalares tradicionais.

Tabela 3: Desempenho comparativo dos principais modelos de cada abordagem.

Classificador P(acuracia =1) P(desaceleragdo < 1.5)
Benchmark (ILU-1) 0,49 0,58
MLP 0,57 0,69
SvVC 0,56 0,64
Random Forest 0,55 0,70
CNN_ 256 0,89 0,94
CNN_ 128 0,88 0,94
CNN_ 64 0,86 0,93

4 Consideracoes Finais

Nosso estudo empirico, utilizando 126 matrizes SPD da SuiteSparse Matrix Collection, revela
resultados relevantes. A abordagem baseada em CNN demonstra melhorias em relagao aos métodos
tradicionais - um aumento de 32% na probabilidade de obter precisiao perfeita e uma melhoria de
25% na manutengao de uma desaceleragao computacional aceitavel.

Neste estudo, os modelos baseados em parametros escalares foram usados com suas configura-
¢oes padrao sem ajuste extensivo de parametros. Isso sugere que, com a otimizagao adequada, esses
modelos podem alcangar um desempenho melhor do que o relatado aqui. No entanto, a grande
diferenca de desempenho entre os modelos escalares nao ajustados e nossa abordagem CNN indica
que o aprimoramento decorre principalmente da forma como as informagoes sao representadas e
nao da sofisticacado do modelo. A codificagao de padroes de esparsidade de matriz como imagens
captura informacoes estruturais que os parametros escalares perdem.

A abordagem baseada em imagens oferece uma alternativa para a selecdo automatizada de
precondicionadores em solucionadores iterativos. No entanto, uma comparagao justa entre as
versoes totalmente otimizadas de ambas as abordagens forneceria informacoes adicionais sobre
seus pontos fortes e possiveis aplicagoes.

No futuro, planejamos estender nossa abordagem CNN para otimizar parametros adicionais
de métodos iterativos, incluindo a selecao do tipo de solver e parametros de tolerancia, entre
outros. Além disso, uma investigagao abrangente sobre modelos baseados em parametros escalares
ajustados de forma otimizada forneceria referéncias comparativas valiosas. Essa direcao de pesquisa
visa fornecer um ajuste mais abrangente e automatizado para aplicativos de computagao de alto
desempenho que exigem solucoes eficientes de sistemas lineares esparsos.
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