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Resumo. Em computação de alto desempenho (HPC), a solução eficiente de grandes sistemas
lineares esparsos é fundamental, sendo os métodos iterativos a escolha predominante, cuja perfor-
mance está ligada ao precondicionador escolhido. Apresentamos uma representação da esparsidade
de matrizes por meio de imagens RGB. Utilizando uma rede neural convolucional (CNN), a tarefa
de seleção do precondicionador se transforma em um problema de classificação multi-classe. Testes
com 126 matrizes da coleção SuiteSparse enfatizam a adequação do modelo CNN, observando um
aumento de 32% na acurácia e uma redução de 25% no tempo de execução.

Palavras-chave. computação de alto desempenho (HPC), sistemas lineares esparsos, métodos
iterativos, escolha de precondicionadores, rede neural convolucional, classificação multi-classe.

1 Introdução
Os métodos de Krylov são os solvers lineares preferidos para simulações numéricas em, por

exemplo, engenharia de reservatórios que exigem a solução de grandes sistemas lineares com ma-
trizes esparsas [5]. No entanto, seu sucesso depende da escolha de um precondicionador adequado
[14]. Discutiremos uma técnica para representar graficamente propriedades estruturais ou mate-
máticas das matrizes esparsas envolvidas na escolha de precondicionadores. Esta representação
deve ser escalável e, para grandes sistemas esparsos, o ideal é que a complexidade computacional
seja linear em relação ao número de elementos não nulos.

Entre os atributos da matriz, devemos destacar a ordem, seus autovalores e valores singulares, o
número de condicionamento, o padrão de esparsidade, a densidade e a dominância diagonal, entre
outros. Com a exceção do padrão de esparsidade, esses atributos são numéricos. A esparsidade
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encapsula atributos topológicos sobre a conexão entre os elementos não nulos da matriz. Embora
não seja o único fator determinante, o padrão de esparsidade afeta o nível de paralelismo possível
tanto na aplicação quanto na construção de precondicionadores como ILU(k) [14].

Exploramos algumas técnicas de aprendizagem profunda (AP) para obter automaticamente
representações compactas de matrizes esparsas para selecionar precondicionadores. Ampliando a
abordagem de Yamada et al. [16], usamos imagens RGB para codificar espacialmente os padrões de
esparsidade. Diferentemente do trabalho de Yamada, nossa metodologia incorpora a classificação de
vários rótulos para identificar uma gama de precondicionadores adequados para uma determinada
matriz esparsa. Para processar as representações baseadas em imagens, empregamos uma rede
neural convolucional (CNN) [10]. Há vários trabalhos que utilizam AP para tratar problemas em
álgebra linear computacional, por exemplo [1, 3, 6], para maiores detalhes, ver [15].

Nossas contribuições são as seguintes: adotamos um modelo multi-rótulo para a seleção de
diversos precondicionadores para uma única matriz, lidando melhor com casos em que vários pre-
condicionadores têm desempenhos semelhantes; comparamos modelos baseados em atributos nu-
méricos com modelos baseados em imagens. Os modelos baseados em imagens superam os modelos
baseados em dados numéricos, com uma probabilidade 32% maior de sugestão de precondicionador
ideal e uma chance 26% maior de baixo impacto computacional.

Este texto resume alguns dos resultados de um trabalho em desenvolvimento cuja versão inicial
se encontra disponível em [15]; vários detalhes omitidos aqui, devido ao limite do número de
páginas, podem ser encontrados nesse trabalho. O restante deste artigo está assim estruturado: a
Seção 2 descreve a metodologia, a Seção 3 discute os resultados numéricos e a Seção 4 conclui o
artigo, destacando sua importância e sugerindo futuras direções de pesquisa.

2 Metodologia

Propomos codificar a esparsidade da matriz e alguns atributos facilmente computáveis através
de uma imagem RGB. Realizamos experimentos comparando modelos de AP treinados em atributos
numéricos da matriz com aqueles treinados em imagens. Empregamos 126 matrizes simétricas,
positivo-definidas (SPD) e não diagonais da coleção de matrizes SuiteSparse[8].

Utilizamos um conjunto usual de parâmetros escalares para caracterizar as matrizes: densidade,
número de linhas, número de elementos não nulos, número médio de elementos não nulos por linha,
condicionamento, autovalores extremos, total de linhas com diagonal dominância e razão mínima
entre o valor absoluto do elemento diagonal e a soma das entradas não diagonais. Entre esses
parâmetros, o número da condicionamento e os autovalores foram calculados usando o MATLAB.
Embora o número de condicionamento de uma matriz SPD seja definido por seus autovalores
extremos, os atributos que empregamos são estimativas, o que os torna não redundantes.

Para representar visualmente as propriedade da matriz, criamos um conjunto de dados de
imagem com base no método proposto por Yamada et al. [16]. Cada matriz A é particionada em
blocos Aij de dimensão b ≈ N/m, em que N é a dimensão da matriz e m é a resolução da imagem.
Esses blocos são representados como pixels pij em uma imagem de m×m pixels. Geramos quatro
conjuntos de imagens com m ∈ {32, 64, 128, 256}.

Cada pixel pij consiste em três componentes alinhados com os canais RGB: vermelho, verde e
azul. O canal vermelho captura a magnitude dos elementos diferentes de zero no bloco da matriz, o
azul incorpora as dimensões da matriz e o verde transmite a densidade do bloco. Como resultado,
as características distintas de cada matriz são visualmente representadas, com os atributos de cada
bloco influenciando a cor do pixel correspondente.

A Figura 1 ilustra a conversão de uma matriz 20× 20 em uma imagem de 5× 5 pixels. Aqui,
cada pixel na imagem corresponde a um bloco de 4× 4 da matriz.

A representação da esparsidade como imagens captura naturalmente as informações topológicas,
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Figura 1: Representação de matriz 20× 20 em blocos 5× 5. Fonte: Os autores.

codificando-as em relações geométricas, que são mais difíceis de serem obtidas com representações
escalares. Esse processo gerou quatro conjuntos de atributos escalares estendidos, correspondentes
a cada m ∈ {32, 64, 128, 256}. Para gerenciar o aumento da dimensionalidade e reter os aspectos
mais informativos, usamos a análise de componentes principais (PCA), capturando 99% da variação
nos dados [7].

Consideramos dez precondicionadores: Fatoração LU Incompleta com níveis 0 (ILU-0) e 1 (ILU-
1), Bloco Jacobi (BJACOBI), Sobrerelaxação Sucessiva (SOR), Point Block Jacobi (PBJACOBI),
Multigrid (MG), Jacobi (JACOBI), Fatoração Incompleta de Cholesky (ICC), Multigrid Algé-
brico Geométrico (GAMG), Eisenstat (EISENSTAT). Estes precondicionadores estão disponíveis
no PETSc [2] e foram acessados empregando-se a opção -pc com os seus respectivos valores default.
Geramos dez sistemas lineares aleatórios para cada matriz. Os vetores solução x⋆ foram extraídos
de uma distribuição normal padrão e os vetores do lado direito foram calculados como b = Ax⋆.
Em seguida, resolvemos cada sistema usando o método de Gradiente Conjugado Precondicionado
(PCG) [14].

Para cada sistema linear e precondicionador, executamos o método PCG cinco vezes, calculamos
o tempo mediano de resolução e somamos esses tempos medianos de todos os dez sistemas para
cada precondicionador.

Algumas configurações não convergiram para soluções aceitáveis em tempo hábil. Para compa-
tibilizar as medidas de performance, utilizamos o resíduo e o erro relativos. Seja x̄ o vetor solução
estimado para o sistema Ax = b. Neste caso, o resíduo e o erro relativos são, respectivamente:

r(x̄) =
∥Ax̄− b∥2

∥b∥2
e e(x̄) =

∥x̄− x⋆∥2
∥x⋆∥2

, x⋆ ̸= 0. (1)

Definimos um par (matriz, precondicionador) como viável se, em todos os 10 sistemas lineares,
tivermos r(x̄) < 0, 01, e(x̄) < 0, 1 e o tempo total para obtenção das soluções for inferior a um
minuto. Cada par que não atendeu a essas condições foi rotulado como inviável. Com esse limite
de tempo (um minuto), todas as matrizes obtiveram pelo menos um resolvedor viável.

Para cada matriz A e precondicionador P , diremos que P é um precondicionador ótimo se (A,P )
for viável e seu tempo de execução for, no máximo, 10% mais lento que o precondicionador viável
mais rápido para a mesma matriz. Esta definição resultou em 126 conjuntos de precondicionadores
ótimos, um conjunto por matriz.

Definimos o problema de seleção de precondicionadores como uma tarefa de classificação multi-
rótulo, onde a entrada são os atributos da matriz e a saída é um conjunto de precondicionadores
ótimos. Consideramos dois tipos de dados de entrada: propriedades escalares e dados de imagem.
Usamos as seguintes bibliotecas para implementar os modelos de AP: scikit-learn, TensorFlow e
Keras [4, 11, 12].

Aplicamos os seguintes classificadores ao conjunto de dados de propriedades escalares: Logistic
Regression, Support Vector Classifier (SVC), Decision Tree, Random Forest, Gradient Boosting, K-
Nearest Neighbors, Multi-layer Perceptron (MLP) e Gaussian Naive Bayes (GNB) — a descrição
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Figura 2: Arquitetura de Rede Neural Convolucional. Fonte: Os autores.

desses métodos está fora do escopo deste artigo, ver [9] para detalhes. Cada classificador foi
utilizado com seus parâmetros default.

Para as imagens RGB, empregamos uma CNN [13] com a seguinte arquitetura: uma camada
de entrada, que aceita os dados da imagem, aplica uma operação de convolução e uma função
de ativação de Unidade Linear Retificada (ReLU) para introduzir não linearidade no modelo;
a camada subsequente é um pooling máximo com uma operação 2 × 2 na saída da camada de
entrada; agora temos outra convolução; uma outra camada de pooling máximo reduzindo ainda
mais as dimensões do mapa de atributos; uma camada para o achatamento, o mapa de atributos
resultante torna-se um vetor 1D; uma camada totalmente conectada consistindo em 128 neurônios
e usando a função de ativação ReLU que aceita a saída achatada da camada anterior; uma camada
de dropout para evitar overfitting, desconsiderando aleatoriamente 50% dos neurônios da camada
anterior; finalmente, a camada de saída emprega uma função de ativação sigmoide para produzir
a saída final do modelo, o número de neurônios nesta camada corresponde ao número de classes
(precondicionadores) no conjunto de dados. A Figura 2 apresenta uma representação gráfica desta
arquitetura CNN.

Algoritmos de classificação multi-rótulos podem produzir um conjunto vazio de rótulos (precon-
dicionadores) como saída. Nesses casos, adotamos a alternativa de selecionar o precondicionador
mais frequente no conjunto de dados, ou seja, ILU-1. Esta alternativa seria uma escolha natural
para um usuário sem informações adicionais.

3 Resultados
O ambiente computacional foi um processador Intel(R) Xeon(R) CPU E5-2650 v2 @ 2,60GHz

com 64GB de RAM, rodando Debian GNU/Linux 11 e C++ compilado com GNU g++ (De-
bian 10.2.1-6) com diretivas: -std=c++17 -O3 -lrt -fPIC -m64 -march=nativo -mtune=nativo
-fopenmp-simd; PETSc compilado com mpicxx no GNU g++ (Debian 3.3.1-5). Testes executados
sequencialmente com uma única thread e um processo MPI. TensorFlow (2.12.0) e scikit-learn
(1.2.2) [11, 12] forneceram o ambiente de AP.

Avaliamos nossos modelos usando duas métricas: acurácia e desaceleração. A acurácia mede
a proporção de precondicionadores ótimos previstos corretamente. Para a matriz i, onde Yi é o
conjunto de precondicionadores ótimos e Ŷij os precondicionadores previstos pelo modelo j. A

acurácia é dada por: |Yi∩Ŷij|
|Ŷij| . A desaceleração é a razão entre o tempo de execução do precon-

dicionador mais rápido previsto pelo modelo e o tempo de execução do precondicionador ótimo
mais rápido. Para a matriz i e o modelo j, tijk é o tempo de execução do precondicionador
k previsto pelo modelo j, e t∗i é o tempo de execução do precondicionador ótimo mais rápido,
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desaceleraçãoij =
mink tijk

t∗i
. Essas métricas são complementares: a desaceleração considera apenas

o melhor precondicionador previsto, enquanto a acurácia penaliza os modelos que preveem muitos
precondicionadores não ideais. Usamos uma divisão de treinamento-teste de 80%-20% e repetimos
cada ciclo de treinamento-teste-avaliação 30 vezes objetivando resultados confiáveis e atenuando a
tendência de qualquer partição de dados única.

A Tabela 1 apresenta a probabilidade de cada classificador obter acurácia perfeita (P (acurácia =
1)) e desaceleração aceitável (P (desaceleração < 1, 5)). Também mostra a quantidade de precon-
dicionadores ótimos previstos. O MLP obteve a maior probabilidade de acurácia perfeita, 0,57,
enquanto o GNB apresentou a maior probabilidade de desaceleração aceitável, 0,79. O número
médio de precondicionadores ideais por matriz é de 1,29. O GNB prevê uma média de 4,9 precon-
dicionadores por matriz; esta previsão excessiva reduz sua acurácia, embora capture o precondici-
onador ideal. MLP , SVC, Random Forest e K-Nearest Neighbors demonstram um desempenho
mais equilibrado, com probabilidades de acurácia acima de 0,55 e probabilidades de desaceleração
acima de 0,6.

Tabela 1: Acurácia e a desaceleração para classificadores escalares. Precondicionadores previstos.
Classificador P (acur. = 1) P (desac. < 1.5) Previstos

MLP 0,57 0,69 1,07
SVC 0,56 0,64 1,00
Random Forest 0,55 0,70 1,13
K-Nearest Neighbors 0,55 0,66 1,05
Logistic Regression 0,48 0,61 1,10
Gradient Boosting 0,47 0,68 1,29
Decision Tree 0,39 0,69 1,49
Gaussian Naive Bayes 0,05 0,79 4,91

Avaliamos CNNs em imagens matriciais com quatro resoluções diferentes: 32×32, 64×64,
128×128 e 256×256 pixels, denotados como CNN_32, CNN_64, CNN_128 e CNN_256, respectivamente.

Conforme mostrado na Tabela 2, os modelos CNN têm desempenho excepcional. O CNN_256
obteve a maior probabilidade de precisão perfeita com 0,89. Em termos de métricas de desacele-
ração, tanto o CNN_256 quanto o CNN_128 mantiveram uma probabilidade de 0,94 de atingir um
fator de desaceleração abaixo de 1,5. Embora o desempenho geralmente melhore com o aumento
da resolução da imagem, os ganhos diminuem além de 128×128 pixels, sugerindo que imagens de
altíssima resolução podem não oferecer benefícios adicionais.

Tabela 2: Acurácia e desaceleração para classificadores baseados em imagem.
Classificador P (acurácia = 1) P (desaceleração < 1.5)

CNN_256 0,89 0,94
CNN_128 0,88 0,94
CNN_64 0,86 0,93
CNN_32 0,82 0,89

Finalmente, comparamos os modelos de melhor desempenho dos métodos escalares e baseados
em imagem. Como linha de base, incluímos um classificador de referência que sempre seleciona o
precondicionador que ocorre com mais frequência no conjunto de dados (ILU-1). Como a Tabela 3
indica, os modelos CNN superam o desempenho do modelo de referência e dos modelos baseados
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em escalares. O modelo CNN_256 obteve uma probabilidade 32% maior de precisão perfeita em
comparação com o melhor modelo baseado em parâmetros escalares e uma melhoria de 24% em
relação ao ILU-1 puro. Os modelos CNN apresentaram vantagem na manutenção de desaceleração
aceitável. Esses resultados indicam, sobre este conjunto de matrizes, que as representações baseadas
em imagem dos padrões de esparsidade da matriz capturam informações mais relevantes para a
seleção do precondicionador do que os modelos baseados em parâmetros escalares tradicionais.

Tabela 3: Desempenho comparativo dos principais modelos de cada abordagem.
Classificador P (acurácia = 1) P (desaceleração < 1.5)

Benchmark (ILU-1) 0,49 0,58
MLP 0,57 0,69
SVC 0,56 0,64
Random Forest 0,55 0,70
CNN_256 0,89 0,94
CNN_128 0,88 0,94
CNN_64 0,86 0,93

4 Considerações Finais
Nosso estudo empírico, utilizando 126 matrizes SPD da SuiteSparse Matrix Collection, revela

resultados relevantes. A abordagem baseada em CNN demonstra melhorias em relação aos métodos
tradicionais - um aumento de 32% na probabilidade de obter precisão perfeita e uma melhoria de
25% na manutenção de uma desaceleração computacional aceitável.

Neste estudo, os modelos baseados em parâmetros escalares foram usados com suas configura-
ções padrão sem ajuste extensivo de parâmetros. Isso sugere que, com a otimização adequada, esses
modelos podem alcançar um desempenho melhor do que o relatado aqui. No entanto, a grande
diferença de desempenho entre os modelos escalares não ajustados e nossa abordagem CNN indica
que o aprimoramento decorre principalmente da forma como as informações são representadas e
não da sofisticação do modelo. A codificação de padrões de esparsidade de matriz como imagens
captura informações estruturais que os parâmetros escalares perdem.

A abordagem baseada em imagens oferece uma alternativa para a seleção automatizada de
precondicionadores em solucionadores iterativos. No entanto, uma comparação justa entre as
versões totalmente otimizadas de ambas as abordagens forneceria informações adicionais sobre
seus pontos fortes e possíveis aplicações.

No futuro, planejamos estender nossa abordagem CNN para otimizar parâmetros adicionais
de métodos iterativos, incluindo a seleção do tipo de solver e parâmetros de tolerância, entre
outros. Além disso, uma investigação abrangente sobre modelos baseados em parâmetros escalares
ajustados de forma otimizada forneceria referências comparativas valiosas. Essa direção de pesquisa
visa fornecer um ajuste mais abrangente e automatizado para aplicativos de computação de alto
desempenho que exigem soluções eficientes de sistemas lineares esparsos.
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