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Resumo. Este trabalho descreve a criação de uma apostila voltada para professores do Ensino
Médio, com o intuito de apresentar conceitos de Pensamento Computacional, a linguagem de pro-
gramação Python e a aplicação de métodos numéricos para estudantes dessa etapa educacional. A
apostila foi desenvolvida como o produto educacional de uma dissertação defendida no âmbito do
PROFMAT no CEFET-MG. O material aborda métodos numéricos clássicos, como técnicas para
encontrar zeros de funções de uma variável e soluções para sistemas de equações lineares e não
lineares. O principal objetivo desta iniciativa é contribuir para a melhoria da qualidade do processo
de ensino-aprendizagem na educação básica, oferecendo um recurso didático que pode ser utili-
zado como apoio para promover discussões sobre Pensamento Computacional e métodos numéricos
iterativos, integrando ferramentas computacionais no contexto da sala de aula.
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1 Introdução
Atualmente, a tecnologia está profundamente integrada à nossa realidade, influenciando tanto

o modo como vivemos quanto o processo de aprendizagem. Nesse cenário, o Pensamento Computa-
cional surge como uma competência essencial, cuja inserção no ambiente escolar pode preparar as
novas gerações para um futuro cada vez mais moldado por avanços tecnológicos. A Base Nacional
Comum Curricular (BNCC) [2] reconhece a relevância dessa habilidade ao enfatizar sua importân-
cia no contexto educacional, destacando seu papel fundamental na formação dos estudantes e no
avanço da aprendizagem no mundo contemporâneo.

Com o objetivo de desenvolver o Pensamento Computacional e, simultaneamente, explorar as-
pectos aplicados da Matemática, propomos a elaboração de uma apostila que introduz, de maneira
simplificada, métodos numéricos em um nível acessível para alunos do Ensino Médio, especialmente
aqueles com maior interesse pela disciplina.

Na Seção 2, discutimos o conceito e a relevância do Pensamento Computacional no contexto
educacional e na Seção 3 apresentamos como a BNCC sugere que ele seja trabalhado. A Seção 4 é
dedicada à apresentação da apostila desenvolvida, detalhando sua estrutura e conteúdo. Por fim,
na Seção 5, são apresentadas as considerações finais.

2 Pensamento Computacional no Ensino
A introdução do Pensamento Computacional no âmbito educacional não é uma proposta re-

cente. Desde a década de 1980, Papert [6] já defendia a ideia de que:
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Aprender a se comunicar com um computador pode mudar a forma como as pessoas
pensam, favorecendo um outro tipo de aprendizado (PAPERT, 1980, p. 6).

Em 2013, Grover e Pea [5] argumentam que o Pensamento Computacional deve integrar o con-
junto de conhecimentos que buscamos desenvolver nas crianças por meio da resolução de problemas
cotidianos. Os autores afirmam que, assim como reconhecemos a importância da alfabetização ci-
entífica para a compreensão do mundo, é essencial incluir o entendimento do funcionamento interno
de aplicativos e computadores.

Mais recentemente, em 2006, Wing [9] define o Pensamento Computacional como um conjunto
de habilidades e competências associadas à Ciência da Computação, que devem ser cultivadas
desde os primeiros anos escolares. Wing enfatiza que o Pensamento Computacional é uma forma
de pensar inerente aos seres humanos, envolvendo diversas habilidades que exigem diferentes níveis
de abstração. Essa forma de pensar difere do funcionamento das máquinas, e, portanto, não se
restringe apenas a profissionais da área de computação. Trata-se de uma habilidade intelectual
fundamental para todos, assim como ler, escrever ou realizar operações matemáticas.

Outra perspectiva sobre o tema é apresentada por Bordini (2016) [1]. Segundo o autor, o
Pensamento Computacional engloba um conjunto de habilidades específicas, tais como:

1. Formular problemas de maneira que possam ser resolvidos com o auxílio de computadores e
outras ferramentas;

2. Organizar e analisar dados de forma lógica;
3. Representar dados por meio de abstrações, modelos ou simulações;
4. Automatizar soluções através de algoritmos;
5. Identificar, analisar e implementar soluções de maneira eficiente e eficaz;
6. Generalizar e transferir a abordagem de resolução para outros problemas.

3 Pensamento Computacional na BNCC

Na BNCC, diversos trechos destacam a importância do Pensamento Computacional e da utili-
zação de tecnologias digitais no contexto do ensino de Matemática. Um exemplo disso é a menção
de que os conhecimentos matemáticos desempenham um papel fundamental no desenvolvimento
do Pensamento Computacional. Além disso, a BNCC enfatiza que os algoritmos podem ser inte-
grados como parte do conteúdo a ser trabalhado no ensino de Matemática, reforçando a relação
entre essas duas áreas [2].

(. . . ) a aprendizagem de Álgebra, como também aquelas relacionadas a Números, Ge-
ometria e Probabilidade e estatística, podem contribuir para o desenvolvimento do
Pensamento Computacional dos alunos, tendo em vista que eles precisam ser capa-
zes de traduzir uma situação dada em outras linguagens, como transformar situações-
problema, apresentadas em língua materna, em fórmulas, tabelas e gráficos e vice-versa.
(BNCC, 2018, p. 271)

O trecho a seguir, destaca as conexões entre a Álgebra e o Pensamento Computacional, destacando
como essas duas áreas se interligam e se complementam no processo de aprendizagem [2].

Associado ao Pensamento Computacional, cumpre salientar a importância dos algorit-
mos e de seus fluxogramas, que podem ser objetos de estudo nas aulas de Matemática.
(. . . ) Outra habilidade relativa à álgebra que mantém estreita relação com o Pensa-
mento Computacional é a identificação de padrões para se estabelecer generalizações,
propriedades e algoritmos. (BNCC, 2018, p. 271)
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O próximo trecho ressalta a importância de introduzir o uso de tecnologias já nos anos iniciais
da educação, como uma estratégia para preparar os estudantes para as demandas e desafios que
encontrarão nos anos finais [2].

Além disso, a BNCC propõe que os estudantes utilizem tecnologias, como calculadoras
e planilhas eletrônicas, desde os anos iniciais do Ensino Fundamental. Tal valorização
possibilita que, ao chegarem aos anos finais, eles possam ser estimulados a desenvolver o
Pensamento Computacional, por meio da interpretação e da elaboração de algoritmos,
incluindo aqueles que podem ser representados por fluxogramas. (BNCC, 2018, p. 528)

Apesar de o Pensamento Computacional ser explicitamente mencionado na BNCC, ele ainda é
um tema relativamente novo, o que gera diversas incertezas em relação à sua compreensão e im-
plementação nos currículos escolares. Diante desse cenário, a apostila apresentada neste trabalho
foi desenvolvida com o objetivo de oferecer um material acessível e prático, que contribua para
a aplicação das diretrizes propostas pela BNCC, facilitando a integração do Pensamento Compu-
tacional no ambiente educacional. Nossa abordagem consistiu em utilizar os métodos numéricos
como um exemplo concreto da aplicação do Pensamento Computacional na resolução de problemas
matemáticos. Dessa forma, buscamos ilustrar como problemas complexos podem ser solucionados
com o auxílio de algoritmos e o uso de ferramentas computacionais.

4 A Apostila
Elaboramos a apostila “Métodos Numéricos e Python no Ensino Médio” com o objetivo de

auxiliar alunos e professores do Ensino Médio na introdução ao Pensamento Computacional e no
uso de métodos numéricos aplicados à resolução de problemas matemáticos, utilizando a linguagem
de programação Python. Nosso propósito foi criar um material didático e acessível, que não apenas
apresentasse conceitos fundamentais, mas também oferecesse uma experiência prática por meio
da construção de algoritmos e programas. A apostila está disponível sob uma licença Creative
Commons na página pessoal do autor deste trabalho [3]. Sua capa, sumário e QR code para
download podem ser vistos na Figura 1.
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Neste trabalho, propomos apresentar as ideias fundamentais para a elaboração da Apostila
“Métodos Numéricos e Python no Ensino Médio”. Não caberia nesta exposição, adentrarmos nos
detalhes dos métodos matemáticos discutidos, pois são assuntos muito bem estabelecidos na lite-
ratura. A apostila está organizada em cinco capítulos, cada um dedicado a aspectos específicos do
aprendizado de programação e métodos numéricos, sempre com o suporte de recursos computaci-
onais de fácil acesso. Por meio de links disponíveis na apostila, os códigos Python dos exemplos
apresentados podem ser acessados diretamente no Google Colaboratory [4], assim como os códigos
utilizados para a geração das imagens.

O primeiro capítulo, “Apresentação”, introduz o propósito da apostila e a metodologia adotada,
destacando a importância de integrar conceitos matemáticos com ferramentas de programação para
potencializar o aprendizado.

O Capítulo 2, “Programação”, é dedicado a uma breve introdução à linguagem de programação
Python. Ele apresenta as plataformas de programação que serão utilizadas ao longo da apostila,
com destaque para o Google Colaboratory, uma ferramenta online que permite a execução de
códigos Python diretamente no navegador, e o aplicativo QPython3L [7], que pode ser usado em
smartphones sem necessidade de conexão à internet, permitindo que os alunos programem em
seus dispositivos móveis. Em seguida, são apresentados os comandos básicos de entrada e saída
de dados, fundamentais para a interação com o usuário e a manipulação de informações, assim
como as estruturas de repetição e controle de fluxo, essenciais para a criação de algoritmos. Para
consolidar o aprendizado, é proposta a criação de uma Tabuada Eletrônica Interativa e de um
programa que simula uma Venda Online, atividades que permitem aplicar os conceitos estudados
e desenvolver a habilidade de construir programas úteis e funcionais. A Figura 2 mostra algumas
páginas da apostila que apresentam os ambientes de desenvolvimento utilizados. O objetivo das
imagens é ilustrar como a apostila está organizada e não seus conteúdos.

2
Programação

2.1 Plataformas de Programação . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Entrada e Sáıda de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Repetições e Controle de Fluxo . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Consolidando o Aprendizado com Exemplos Práticos . . . . . . . . . . . . . 24

Neste caṕıtulo, embora não contenha uma introdução completa à programação,

exploraremos de forma simplificada os comandos básicos da linguagem de programação

Python, conhecida por sua simplicidade e versatilidade em diversas áreas, como

ciência de dados, automação de tarefas, desenvolvimento web e de jogos, inteligência

artificial, entre outras. Abordaremos as caracteŕısticas que a torna uma ferramenta

poderosa para resolver problemas matemáticos e cient́ıficos, mostrando de forma

introdutória como escrever um programas e compreender estruturas de controle e

dados para desenvolver algumas aplicações, podendo assim estimular a criatividade,

o pensamento lógico e a resolução de problemas.

2.1 Plataformas de Programação

Nesta seção inicial, vamos apresentar as plataformas de programação que serão

utilizadas nessa apostila. Após essa introdução às plataformas, seguiremos com os

passos para o download, instalação e acesso às mesmas. Não se preocupe se você

não tem experiência prévia em programação, este guia foi desenvolvido pensando em

facilitar o aprendizado, fornecendo instruções claras e exemplos práticos, ajudando

assim na compreensão dos processos executados.

≡ ◀ ▲ ▶
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Nesse momento, teremos uma página em branco onde vamos começar a escrever os

códigos. Mas antes, é importante entender o que são código e script na programação,

especialmente no contexto da linguagem Python.

O código refere-se às instruções escritas em uma linguagem de programação, como

o Python, que são interpretadas ou compiladas para executar ações espećıficas no

equipamento utilizado (computador, smatphones, entre outros). Essas instruções

podem incluir operações matemáticas, manipulação de dados, controle de fluxo, entre

outras funcionalidades. Já um script, por sua vez, é um conjunto de instruções ou

comandos organizados em um arquivo de texto, geralmente com extensão “.py” no

caso do Python. Esse arquivo contém o código que será executado pelo interpretador

Python para realizar as tarefas programadas.

Antes de começarmos a escrever os códigos, vamos salvar nosso script, assim estamos

guardando as instruções que escrevemos em um arquivo para que possamos executá-lo

posteriormente e reutilizar o código desenvolvido. Essa prática é fundamental na

programação, pois permite organizar e gerenciar projetos de forma eficiente. Para

salvar o script, siga os passos:

1. Clique em ‘salvar’;

2. Clique no campo aberto para digitar o nome a ser dado para o arquivo que

será salvo;

3. Escreva ‘Teste.py’;

4. Clique em ‘ok’.

A Figura 2.2 mostra todos os passos descritos anteriormente.

Figura 2.2: Salvando um script no aplicativo QPython3L.

≡ ◀ ▲ ▶
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Para acessar o Google Colab, basta ter uma conta do Google e acessar o site da

plataforma pelo link Google Colab.

A Figura 2.4 mostra a tela inicial do Google Colab onde pode-se criar novos notebooks

de Python ou abrir notebooks existentes diretamente no navegador.

Figura 2.4: Página inicial do Google Colab.

Ao clicar no botão ‘novo notebook’ ou ao abrir um notebook já existente, teremos a

plataforma onde serão escritos os códigos Python, mostrado na Figura 2.5 a seguir.

Figura 2.5: Plataforma de programação do Google Colab.

No Google Colab, você pode escrever código Python em células individuais. Para

criar uma nova célula, clique no botão ‘+ Codigo’ na barra de ferramentas. Em

seguida, você pode digitar seu código Python na célula e executá-lo clicando no botão

‘Run’ ao lado da célula.

Além de escrever e executar código Python, o Google Colab oferece diversos recursos

adicionais, como suporte a bibliotecas populares, gráficos interativos, integração com

≡ ◀ ▲ ▶

Figura 2: Páginas da apostila que apresentam os ambientes de desenvolvimento para o Python. Fonte:
dissertação de E. B. L. Santos [8].

O Capítulo 3, “Funções”, concentra-se no estudo de funções, tanto no contexto matemático
quanto em Python. Primeiramente, revisamos conceitos matemáticos essenciais relacionados a
funções e zeros de funções. Em seguida, o capítulo avança para a criação e utilização de funções
em Python, demonstrando como essa prática permite modularizar e organizar códigos de maneira
eficiente. Este capítulo é fundamental para compreender a importância das funções na progra-
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Funções 32

Assim, podemos ver como a função 𝑓(𝑥) = 2𝑥+ 3 é avaliada para diferentes valores

de 𝑥 usando Python.

Função Quadrática

A função quadrática

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐,

onde 𝑎 , 𝑏 e 𝑐 são constantes reais e 𝑎 ̸= 0 . O gráfico dessa função é uma parábola

no plano cartesiano e está é utilizada para modelar diversos fenômenos naturais e

artificiais. Vamos explorar as propriedades das funções quadráticas baseado e seus

coeficientes.

A concavidade da parábola é determinada pelo coeficiente 𝑎 . Se 𝑎 > 0 , a parábola

tem concavidade para cima, e se 𝑎 < 0 , a parábola tem concavidade para baixo e 𝑐

indica o ponto de interseção com o eixo vertical (eixo 𝑦 ).

As Figuras 3.2 e 3.3 mostram o gráfico de duas funções quadráticas, uma com

concavidade para cima ( 𝑎 > 0 ) e outra com concavidade para baixo ( 𝑎 < 0 ).

2 1 0 1 2
0

1

2

3

4

Figura 3.2: Concavidade para cima
(𝑎 > 0) .

2 1 0 1 2

4

3

2

1

0

Figura 3.3: Concavidade para baixo
(𝑎 < 0) .

A Figura 3.4 mostra o gráfico da função 𝑓(𝑥) = 𝑥2 − 6𝑥 + 5 no plano cartesiano

(código).

≡ ◀ ▲ ▶
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Figura 3.4: Gráfico da função 𝑓(𝑥) = 𝑥2−6𝑥+5 no plano cartesiano.

Esse gráfico mostra que se trata de uma parábola com concavidade voltada para cima,

e intersecta o eixo 𝑦 em 5 . Vamos determinar alguns pontos pertencentes a esse

gráfico atribuindo valores espećıficos para 𝑥 e realizando os cálculos correspondentes.

Vamos fazer isso no exemplo a seguir.

Exemplo 3.1.2: Determine alguns pontos pertencentes ao gráfico da função

𝑓(𝑥) = 𝑥2 − 6𝑥+ 5 .

Para determinar alguns pontos pertencentes ao gráfico da função 𝑓(𝑥) =

𝑥2 − 6𝑥+ 5 , vamos calcular os valores de 𝑓(𝑥) para 𝑥 = −2 ,−1 , 0 , 1 , 2 .

𝑓(−2) = (−2)2 − 6(−2) + 5 = 21

𝑓(−1) = (−1)2 − 6(−1) + 5 = 12

𝑓(0) = 02 − 6 · 0 + 5 = 5

𝑓(1) = 12 − 6 · 1 + 5 = 0

𝑓(2) = 22 − 6 · 2 + 5 = −3

Portanto, os pontos (−2, 21) , (−1, 12) , (0, 5) , (1, 0) e (2,−3) pertencem ao

gráfico da função 𝑓(𝑥) = 𝑥2 − 6𝑥+ 5 .

Podemos criar um programa em Python para calcular os valores de 𝑓(𝑥) como

mostra o exemplo a seguir.

≡ ◀ ▲ ▶
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Exemplo 3.1.2: Escreva um programa em Python para calcular os valores de

𝑓(𝑥) = 𝑥2 − 6𝑥+ 5 para para alguns valores espećıficos de 𝑥 (código).

Vamos escrever um código para calcular os valores da função 𝑓(𝑥) para 𝑥 =

−2,−1, 0, 1, 2, 3, 4, 5 . O código será:

1 # Atribuindo valores para x.
2 x_valores = [-2, -1, 0, 1, 2, 3, 4, 5]
3

4 # Efetuando os cálculos correspondentes.
5 for x in x_valores:
6 f_x = x**2 - 6*x + 5
7 print(f"f({x}) = {f_x}")

Os resultados serão:

1 f(-2) = 21
2 f(-1) = 12
3 f(0) = 5
4 f(1) = 0
5 f(2) = -3
6 f(3) = -4
7 f(4) = -3
8 f(5) = 0

Assim, podemos ver como a função 𝑓(𝑥) = 𝑥2 − 6𝑥+ 5 é avaliada para diferentes

valores de 𝑥 usando Python.

Função Exponencial

As funções exponenciais do tipo 𝑓(𝑥) = 𝑎𝑏𝑥 , onde 𝑏 > 0 e 𝑏 ̸= 1 , são importantes

na matemática e na modelagem de fenômenos como crescimento populacional, decai-

mento radioativo e propagação de epidemias. O coeficiente 𝑎 controla a amplitude

da função, determinando 𝑓(0) e influenciando a altura da curva em relação ao eixo

𝑥 . A base 𝑏 define o comportamento da função: quando 𝑏 > 1 , 𝑓(𝑥) apresenta cres-

cimento exponencial conforme 𝑥 aumenta; quando 0 < 𝑏 < 1 , a função representa

um decaimento exponencial. As Figuras 3.5 e 3.6 mostra os gráficos das funções

𝑓(𝑥) = 2𝑥 e 𝑓(𝑥) =

(︂
1

2

)︂𝑥

, ilustrando esses comportamentos (código).

≡ ◀ ▲ ▶

Figura 3: Páginas da apostila que apresentam a função polinomial de segundo grau. Fonte: dissertação
de E. B. L. Santos [8].

mação e sua aplicação na resolução de problemas matemáticos. Na Figura 3 está o trecho que
apresenta a função polinomial de segundo grau, seu gráfico e atividades para serem realizadas
tanto manualmente quanto computacionalmente.

O Capítulo 4, “Métodos Numéricos para Zeros de Funções”, inicia apresentando um método
numérico para calcular raízes quadradas. Em seguida, aborda métodos clássicos utilizados para
calcular zeros de funções, como o Método de Newton, o Método da Bisseção e o Método da Secante.
Cada método é explicado em detalhes, seguido de exemplos práticos implementados em Python.
O uso desses métodos permite resolver equações complexas de maneira eficiente e precisa. Além
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Figura 4.1: Interpretação geométrica do Método de Newton.

Podemos assim utilizar o Método de Newton para funções mais complexas. Vamos

fazer um exemplo com uma função trigonométrica.

Exemplo 4.2.1: Escreva um código Python que encontre um zero da função

𝑓(𝑥) = sen(𝑥) utilizando o Método de Newton (código).

Sabemos que o sen(𝜋) = 0 , logo as iterações do Método de Newton vão

aproximar o valor da estimativa inicial ao valor de 𝜋 ou à algum múltiplo de

𝜋 . A fórmula de iteração espećıfica para esse cálculo será

𝑥𝑛+1 = 𝑥𝑛 −
sen(𝑥𝑛)

cos(𝑥𝑛)
.

Apresentaremos a seguir o código que encontra um zero da função 𝑓(𝑥) = sen(𝑥)

através de uma estimativa inicial suficientemente próxima utilizando o Método

de Newton.

1 # Importa a biblioteca math
2 import math
3

4 #Define o Método de Newton
5 def metodo_newton(aprox_inicial, precisao):
6 x = aprox_inicial
7 iteracao = 0
8 while True:
9 iteracao += 1
10 x_novo = x - math.sin(x) / math.cos(x)
11 print(f"Iteração {iteracao}: x_{iteracao} = {x_novo}")
12 if abs(x_novo - x) < precisao:

≡ ◀ ▲ ▶
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13 return x_novo
14 x = x_novo
15

16 # Solicita ao usuário as informações iniciais
17 ap_inicial = float(input(’Digite a estimativa inicial: ’))
18 precisao = float(input(’Digite a precisão desejada: ’))
19

20 # Executa o método e imprime os resultados
21 resultado = metodo_newton(ap_inicial, precisao)
22 print(f’\nO resultado final aproximado é {resultado}’)

Ao executar este código, informe a estimativa inicial e a precisão. Se o valor

inicial estiver suficientemente próximo de um dos zeros da função seno, o

programa gerará uma sequência que se aproxima cada vez mais do zero da

função.

No código, o usuário fornece uma estimativa inicial utilizando a função input,
que é armazenada na variável ap_inicial, e a precisão desejada, armazenada na

variável precisao. A função metodo_newton utiliza esses valores para iterar até que a

diferença entre a estimativa atual e a nova seja menor que a precisão. A cada iteração,

a variável x é atualizada com a fórmula x_novo = x - math.sin(x) / math.cos(x)
e o progresso é impresso. Quando a condição de precisão é satisfeita, a função retorna

x_novo como a aproximação do zero da função, que é exibida com a função print.

Supondo que o usuário tenha digitado o número 2 para a estimativa inicial e 0,0001

para a precisão desejada, o programa gera o seguinte resultado.

1 Digite a estimativa inicial: 2
2 Digite a precisão desejada: 0.0001
3 Iteração 1: x_1 = 4.1850
4 Iteração 2: x_2 = 2.4679
5 Iteração 3: x_3 = 3.2662
6 Iteração 4: x_4 = 3.1409
7 Iteração 5: x_5 = 3.1416
8 Iteração 6: x_6 = 3.1416
9

10 O resultado final aproximado é 3.1416.

Observe que com essa estimativa inicial foram necessárias 6 iterações para obter a

aproximação de 4 casas decimais, se a estimativa inicial for mais próxima da solução,

menos iterações são necessárias para atingir o objetivo.

≡ ◀ ▲ ▶
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Agora se o usuário digitar o número 6 para a estimativa inicial e 0,0001 para a

precisão desejada, o programa gera o seguinte resultado.

1 Digite a estimativa inicial: 6
2 Digite a precisão desejada: 0.0001
3 Iteração 1: x_1 = 6.2910
4 Iteração 2: x_2 = 6.2831
5 Iteração 3: x_3 = 6.2831
6

7 O resultado final aproximado é 6.2831.

Observe que, se o usuário digitar o número 6, o programa se aproximaria da resposta

6,2831, que é um outro zero da função seno( aproximadamente 2𝜋) . Ou seja, o

Método de Newton se aproxima do zero mais próximo da estimativa inicial.

A Figura 4.2 mostra geometricamente como três iterações do Método de Newton

geraram tangentes em que o ponto de interceção com o eixo 𝑥 se aproximam

graduadamente do zero da função (código).

0 /2 3 /2 2

1.0

0.5

0.0

0.5

1.0

x0 x1x2 x3

Figura 4.2: Tangentes geradas pelo Método de Newton.

Em alguns casos, dependendo da estimativa inicial, o Método de Newton não converge

para o zero da função. Por exemplo, se a estimativa inicial for
𝜋

2
, a reta tangente

gerada pelo Método de Newton não será direcionada para o zero da função.

A Figura 4.3 mostra geometricamente como a reta tangente não vai em direção ao

zero da função (código).

≡ ◀ ▲ ▶

Figura 4: Páginas da apostila que apresentam o método de Newton. Fonte: dissertação de E. B. L.
Santos [8].
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disso, os códigos podem ser acessados diretamente no Google Colaboratory, facilitando o acesso
dos leitores aos códigos e permitindo a execução e experimentação dos exemplos apresentados. O
trecho que apresenta o Método de Newton pode ser visto na Figura 4.

O Capítulo 5, “Métodos Numéricos para Sistemas de Equações”, foca na resolução de sistemas
de equações, tanto lineares quanto não lineares. Ele inicia discutindo o Método de Jacobi para
resolver sistemas de equações lineares, detalhando seu funcionamento e aplicabilidade. Em seguida,
aborda o Método de Newton para sistemas de equações não lineares, mostrando como essa técnica
pode ser adaptada para resolver sistemas mais complexos. A Figura 5 mostra um exemplo que
encontra os pontos de intersecção de duas curvas utilizando o método de Newton.
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Figura 5.8: Representação geométrica do sistema (5.7) e dos pontos
gerados pelo Método de Newton.

Agora, utilizando os programas que desenvolvemos, vamos aplicar o Método de

Newton para resolver um exemplo prático de sistema não linear. Este exemplo

ilustrará como as soluções aproximadas podem ser obtidas e aplicadas a problemas

reais, demonstrando a eficácia do método em contextos práticos.

Exemplo 5.2.1: Dois páıses estão em guerra, um deles lança um mı́ssil que sai

da posição 𝑥 = 9 se se movimentando segundo a função 𝑓(𝑥) = −𝑥2+12𝑥−27

e tem por objetivo atingir o ponto 𝑥 = 3 de território inimigo. O outro

páıs por sua vês lança um mı́ssil interceptador saindo da posição 𝑥 = 0 se

movimentando segundo a função 𝑓(𝑥) = −𝑥2 + 4𝑥 . Encontre o ponto onde os

mı́sseis se encontraram (código).

O problema se trata de encontrar a solução de um sistemas de equações não

lineares escrito como
{︃
𝑦 = −𝑥2 + 4𝑥

𝑦 = −𝑥2 + 12𝑥− 27

O código que realiza esse processo é apresentado abaixo.

1 import numpy as np
2 import math
3

4 # Funções do sistema de equações
5 def eq1(x, y):

≡ ◀ ▲ ▶
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6 return -x**2 + 4*x - y
7

8 def eq2(x, y):
9 return -x**2 + 12*x - 27 - y
10

11 # Derivadas parciais das funções
12 def partial_eq1_x(x):
13 return -2*x + 4
14

15 def partial_eq1_y():
16 return -1
17

18 def partial_eq2_x(x):
19 return -2*x + 12
20

21 def partial_eq2_y():
22 return -1
23

24 # Função Metodo_Newton foi definida em outro lugar
25

26 # Coleta de dados do usuário e chamada da função
27 if __name__ == "__main__":
28 x0 = float(input("Digite a estimativa inicial para x: "))
29 y0 = float(input("Digite a estimativa inicial para y: "))
30 tolerance = float(input("Digite a tolerância para as

aproximações: "))
31

32 # Chamada da função Metodo_Newton
33 x_final, y_final, num_iterations = Metodo_Newton(
34 eq1, eq2,
35 partial_eq1_x, partial_eq1_y,
36 partial_eq2_x, partial_eq2_y,
37 x0, y0, tolerance
38 )
39

40 print(f"\nApós {num_iterations} iterações temos:")
41 print(f"x_{num_iterations} = {x_final:.6f}")
42 print(f"y_{num_iterations} = {y_final:.6f}")

Esse código é similar ao código do exemplo anterior, mudando apenas as funções

e suas derivadas. Nesse programa será solicitado ao usuário a estimativa iniciais

para x e y e em seguida a aproximação desejada. O programa chamará a função

≡ ◀ ▲ ▶
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Metodo_Newton que executará os passos de iteração do Método de Newton até

que se obtenha a aproximação desejada.

Para a execução do programa, vamos iniciar com as estimativas 𝑥0 = 3 e

𝑦0 = 0 que é o ponto de impacto do mı́ssil agressor, e com uma aproximação

de 6 casas decimais. Após a execução, o programa apresentou os resultados a

seguir.

1 Digite a estimativa inicial para x: 3
2 Digite a estimativa inicial para y: 0
3 Digite a tolerância para as aproximações: 0.000001
4 x_1 = 3.3750, y_1 = 2.2500
5 x_2 = 3.3750, y_2 = 2.1094
6 x_3 = 3.3750, y_3 = 2.1094
7

8 Após 3 iterações temos:
9 x_3 = 3.375000
10 y_3 = 2.109375

O programa executou 3 iterações obtendo os resultados 𝑥 = 3,375 e 𝑦 =

2,109375 .

A Figura 5.9 mostra geometricamente a movimentação dos dois mı́sseis e como as

iterações do Método de Newton se aproximam cada vez mais do ponto de encontro

entre eles (código).
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Figura 5.9: Representação geométrica do movimento dos mı́sseis e
dos pontos gerados pelo Método de Newton.

≡ ◀ ▲ ▶

Figura 5: Páginas da apostila que mostram como resolver um sistema não-linear. Fonte: dissertação de
E. B. L. Santos [8].

Os temas abordados nesta apostila estão alinhados com o contexto educacional e tecnológico
atual. A programação, por exemplo, tornou-se uma habilidade fundamental, não apenas para
quem deseja seguir carreiras na área de tecnologia, mas também como uma ferramenta poderosa
para resolver problemas em diversas áreas. O conhecimento sobre métodos numéricos, por sua
vez, permite que os alunos compreendam e apliquem técnicas amplamente utilizadas na ciência,
engenharia, economia e muitas outras disciplinas, para solucionar problemas complexos que não
podem ser resolvidos de forma analítica. Ao capacitar os alunos com essas habilidades, estamos não
apenas preparando-os para desafios acadêmicos e profissionais, mas também despertando o interesse
e a curiosidade por explorar e inovar em um mundo cada vez mais orientado pela tecnologia.

5 Considerações Finais

A apostila desenvolvida tem como objetivo auxiliar o professor de matemática interessado
em explorar conceitos matemáticos mais avançados no ensino do Pensamento Computacional, com
ênfase na utilização de algoritmos, para o Ensino Médio. Ela está alinhada com o papel fundamental
do Pensamento Computacional, conforme descrito na Base Nacional Comum Curricular (BNCC).
Além disso, a apostila contribui para a inserção dos estudantes no universo da tecnologia digital,
desmistificando o funcionamento de computadores e calculadoras, ao introduzir a programação e
os métodos utilizados para resolver problemas complexos.
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