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Resumo: In this paper we apply a method to extend n-dimensional lattice-valued t-conorms
by preserving the largest possible number of properties of these t-conorms which are invariants
under homomorphisms. Further, we also prove some related results and properties.
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1 Introdution

Let L and K be nonempty sets and suppose that M ⊆ L. Given a function f : M −→ K, if we
want to extend the domain of f to cover the whole L, what is the best choice to define f(x) for
the elements x ∈ L\M in order to preserve the largest possible number of properties of f? This
a very complex problem and a answer for this question is not so simple.

Palmeira et al. [8] provided a method to extend t-norms, t-conorms and fuzzy negations
using a special mapping (namely e-operator). Also in this work, we apply this extension method
for n-dimensional t-norms. As a natural consequence of our researches we discuss here about
the extension of n-dimensional t-conorms.

We begin in Section 2 recalling some definitions and results related to lattices, lattice ho-
momorphisms, retractions, sublattices and fuzzy negations. Also in this section, we present
the notion of (r, s)-sublattices and describe the extension method via e-operators. Sections 3 is
devoted to discuss about n-dimensional t-conorms on Ln(L) and it extension.

2 Preliminaries

Let L be a nonempty set. If ∧L and ∨L are two binary operations on L, then 〈L,∧L,∨L〉 is a
lattice provided that for each x, y, z ∈ L, the following properties hold:

1. x ∧L y = y ∧L x and x ∨L y = y ∨L x;

2. (x ∧L y) ∧L z = x ∧L (y ∧L z) and (x ∨L y) ∨L z = x ∨L (y ∧L z);

3. x ∧L (x ∨L y) = x and x ∨L (x ∧L y) = x.

If in 〈L,∧L,∨L〉 there are elements 0 and 1 such that, for all x ∈ L, x∧L 1 = x and x∨L 0 = x,
then 〈L,∧L,∨L, 0, 1〉 is called a bounded lattice.

Definition 2.1. A homomorphism r of a lattice L onto a lattice M is said to be a retraction if
there exists a homomorphism s of M into L which satisfies r ◦ s = idM . A lattice M is called a
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retract of a lattice L if there is a retraction r, of L onto M , and s is then called a pseudo-inverse
of r.

Definition 2.2. Let L and M be arbitrary bounded lattices. We say that M is a (r, s)-sublattice
of L if M is a retract of L (i.e. M is a sublattice of L up to isomorphisms). In other words, M
is a (r, s)-sublattice of L if there is a retraction r of L onto M with pseudo-inverse s : M → L.

Definition 2.3. Every retraction r : L −→M (with pseudo-inverse s) which satisfies s◦r 6 idL
1

(idL 6 s◦r) is called a lower (an upper) retraction. In this case, M is a lower (an upper) retract
of L.

Definition 2.4. Let M be a (r1, s)-sublattice of L. If r1 is a lower retraction and there is an
upper retraction r2 : L −→ M such that its pseudo-inverse is also s, then M is called a full
(r1, r2, s)-sublattice of L. Notation: M E L with respect to (r1, r2, s).

Definition 2.5. Let L be a bounded lattice. A binary operation S : L× L −→ L is a t-conorm
if, for all x, y, z ∈ L, it satisfies:

1. S(x, y) = S(y, x) (commutativity);

2. S(x, S(y, z)) = S(S(x, y), z) (associativity);

3. If x 6L y then S(x, z) 6L S(y, z), ∀ z ∈ L (monotonicity);

4. S(x, 0) = x (boundary condition);

2.1 Extension Method via e-operators

To solve the problem of extending fuzzy logic connectives we have developed in [6, 7, 8] a special
operators which plays a fundamental hole in our extension method. In which follows we define
this operator and present some relevant properties of it.

Definition 2.6. Let M E L with respect to (r1, r2, s). A mapping � : M ×M −→ L is called
an e-operator on M if it is isotonic and satisfies, for each a, b ∈ M and for each x ∈ L, the
following conditions:

r1(a� b) = a ∧M b and r2(a� b) = a ∨M b (1)

r1(x)� r2(x) = x (2)

In other words, if M E L with respect to (r1, r2, s) (by Definition 2.4, there are two retractions
r1, r2 : L −→ M with the same pseudo-inverse s : M −→ L such that s ◦ r1 6 idL 6 s ◦ r2) the
e-operator � describes an isotonic way to relate retractions r1 and r2 with the meet and join
operators of M , respectively, by (1).

Lemma 2.1. Consider MEL with respect to (r1, r2, s) and let � be an e-operator on M . Then,
for all a, b ∈M and x, y ∈ L, the following properties hold:

1. a 6M b if and only if r1(a� b) = a and r2(a� b) = b;

2. For every a ∈M we have s(a) = a� a;

3.
r1(x) 6M r1(y) and r2(x) 6M r2(y) iff x 6L y; (3)

1If f and g are functions on a lattice L it is said that f 6 g if and only if f(x) 6L g(x) for all x ∈ L.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0237 010237-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0237


4. r1(x) = r1(y) and r2(x) = r2(y) if and only if x = y;

5. � is commutative.

Proposition 2.1. Let M E L with respect to (r1, r2, s) and � an e-operator on M . Thus, if S
is a t-conorm on M then

SE
�(x, y) = S(r1(x), r1(y))� S(r2(x), r2(y)) (4)

is a t-conorm on L.

Theorem 2.1. Let M EL with respect to (r1, r2, s) and � be an e-operator on M . Thus, given
a t-norm T on M , the function TE

� : L2 −→ L defined by

TE
� (x, y) = T (r1(x), r1(y))� T (r2(x), r2(y)) (5)

is a t-norm on L.

3 On n-dimensional T-conorms and its Extension

The n-dimensional fuzzy set theory has been studied as a way to generalize the fuzzy set theory
valued to the simplex Ln([0, 1]) = {x = (x1, x2, . . . , xn) ∈ [0, 1]n | x1 6 x2 6 · · · 6 xn} for a
fixed n ∈ N−{0} (see [10]). We think about the fuzzy operators (t-norms, t-conorms and fuzzy
negations) on Ln([0, 1]). For n = 2, a good formalization about interval-valued fuzzy logic is
given by Deschrijver and partners in [3, 4, 5]. Recent studies for arbitrary n have been done by
Bedregal et al. in [2] where a formalization of n-dimensional aggregation functions, particulary
t-norms, fuzzy negations and automorphisms on Ln([0, 1]) is carried out.

Based on this framework, an interesting issue is the generalization of lattice-valued aggrega-
tion functions to higher dimension using a bounded lattice L instead of [0, 1] on the definition
of Ln([0, 1]).

One can naturally define a lattice version of the set Ln([0, 1]), namely

Ln(L) = {x = (x1, x2, . . . , xn) ∈ Ln | x1 6L x2 6L · · · 6L xn} (6)

where L is a bounded lattice.
For each x,y ∈ Ln(L) we define by

x ∧ y = (x1 ∧L y1, x2 ∧L y2, . . . , xn ∧L yn)

and
x ∨ y = (x1 ∨L y1, x2 ∨L y2, . . . , xn ∨L yn)

the meet and join operations on Ln(L), respectively.
Denote /x/ = (x, x, . . . , x) for each x ∈ L. Thus, /0L/ and /1L/ are a bottom and a top

element of Ln(L). As an easy exercise one can prove that 〈Ln(L),∧,∨, /0L/, /1L/〉 is a bounded
lattice.

A partial order on Ln(L) is given by

x 6 y ⇔ xi 6L yi for each i = 1, 2, . . . , n

Proposition 3.1. [2] Let S1, S2, . . . , Sn : [0, 1]× [0, 1]→ [0, 1] be t-conorms such that S1 6 S2 6
· · · 6 Sn. Then

˜S1 · · ·Sn(x,y) = (S1(x1, y1), . . . , Sn(xn, yn)) (7)

is an n-dimensional t-conorm. In case that S1 = S2 = · · · = Sn we denote ˜S1 · · ·Sn by SS.
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A similar result can be easily shown considering a bounded lattice L instead of [0, 1] in
Proposition 3.1.

In this paper we lead with SS n-dimensional t-conorm, but every result presented here

remains valid for ˜S1 · · ·Sn.

Corollary 3.1. Let M E L with respect to (r1, r2, s), � be an e-operator on M and S be a
t-conorm on M . Then SSE

�
: Ln(L)2 −→ Ln(L) given by

SSE
�

(x,y) = (SE
�(x1, y1), S

E
�(x2, y2), . . . , S

E
�(xn, yn))

is a n-dimensional t-conorm on Ln(L).

Proof. Straightforward from Theorem 2.1 and Proposition 3.1.

Proposition 3.2. Let M be a (r, s)-sublattice of L. Then

1. Ln(M) is a (r, s)-sublattice of Ln(L);

2. If M is a lower (upper) (r1, s)-sublattice of L then Ln(M) is a lower (upper) (r1, s)-
sublattice of Ln(L);

3. If M EL with respect to (r1, r2, s) then Ln(M)ELn(L) with respect to (r1, r2, s) where r1,
r2 and s are suitable homomorphisms defined from r1, r2 and s respectively.

Proof. 1. Since M is a (r, s)-sublattice of L, by Definition 2.2 there is a retraction r : L −→M
with a pseudo-inverse s : M −→ L such that r◦s = idM . Define an n-dimensional function
r : Ln(L) −→ Ln(M) defined for each x ∈ Ln(L) by

r(x) = (r(x1), r(x2), . . . , r(xn)) (8)

We claim that r is a n-dimensional retraction such that its pseudo-inverse is an n-dimensional
function s : Ln(M) −→ Ln(L) given by

s(x) = (s(x1), s(x2), . . . , s(xn))

for each x ∈ Ln(M).

Indeed, it is clear that r and s are n-dimensional homomorphisms since r and s are.
Moreover, for each x ∈ Ln(M), we have

r ◦ s(x) = r(s(x1), s(x2), . . . , s(xn))
= (r(s(x1)), r(s(x2)), . . . , r(s(xn)))
= (x1, x2, . . . , xn)

Thus r ◦ s = idLn(M) and hence Ln(M) is a (r, s)-sublattice of Ln(L) by Definition 2.2.

2. If M is a lower (r1, s)-sublattice of L then s◦r1 6 idL. We shall prove that s◦r1 6 idLn(L).
Thus, for each x ∈ Ln(L) it follows that

s ◦ r1(x) = s(r1(x1), r1(x2), . . . , r1(xn))
= (s(r1(x1)), s(r1(x2)), . . . , s(r1(xn)))
6 (x1, x2, . . . , xn)

Analogously, one can prove that Ln(M) is an upper (r2, s)-sublattice of Ln(L) assuming
that M is an upper (r2, s)-sublattice of L.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0237 010237-4 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0237


3. Suppose that M E L. Thus, there are a lower and an upper retractions r1 and r2 from L
onto M with the same pseudo-inverse s : M −→ L. Therefore, by items 1. and 2. it is easy
to check that r1(x)=(r1(x1), r1(x2), . . . , r1(xn)) and r2(x) = (r2(x1), r2(x2), . . . , r2(xn)) for
each x ∈ Ln(L) are n-dimensional lower and upper retractions with the same n-dimensional
pseudo-inverse s(x) = (s(x1), s(x2), . . . , s(xn)) for each x ∈ Ln(M) according to which it
can be inferred that Ln(M) E Ln(L) with respect to (r1, r2, s).

Proposition 3.3. Let M E L with respect to (r1, r2, s) and let � be an e-operator on M . The
function �n : Ln(M)× Ln(M) −→ Ln(L) given by

a�n b = (a1 � b1, a2 � b2, . . . , an � bn) (9)

for all a,b ∈ Ln(M) is an e-operator on Ln(M).

Proof. Straightforward from Proposition 3.2 and from the fact that � is an e-operator on M .

Corollary 3.2. Let M E L with respect to (r1, r2, s) and � be an e-operator on M . If S is a
t-conorm on Ln(M) then the function SE� : Ln(L)× Ln(L) −→ Ln(L) given by

SE� (x,y) = S(r1(x), r1(y))�n S(r2(x), r2(y))

for all x,y ∈ Ln(L), is a t-conorm on Ln(L).

Proof. Straightforward from Theorem 2.1 and Propositions 3.2 and 3.3.

Theorem 3.1. Let M E L with respect to (r1, r2, s), � be an e-operator on M and S be a
t-conorm on M . Then (SS)E� = SSE

�
.

Proof. Take x,y ∈ Ln(L). Then,

(SS)E�(x,y) = SS(r1(x), r1(y))�n S(r2(x), r2(y)) by (5)
= SS((r1(x1), . . ., r1(xn)),(r1(y1), . . . ,r1(yn))�n

SS((r2(x1), . . . , r2(xn)), (r2(y1), . . . , r2(yn)) by eq. (8)
= (S(r1(x1), r1(y1)), . . . , S(r1(xn), r1(yn)))�n

(S(r2(x1), r2(y1)), . . . , S(r2(xn), r2(yn))) by eq. (7)
= (S(r1(x1), r1(y1))� S(r2(x1), r2(y1)), . . . ,

S(r1(xn), r1(yn))� S(r2(xn), r2(yn)) by eq. (9)
= (SE

�(x1, y1), . . . , S
E
�(xn, yn)) by eq. (5)

= SSE
�

(x,y) by eq. (7)

Let CM be the set of all t-conorms S on M (similar to CL, CLn(M) and CLn(L)). The theorem
above shows that the following diagram is commutative:

CM

SE
� //

SS

��

CL

S
SE
�

��
CLn(M)

(SS)E� // CLn(L)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0237 010237-5 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0237


Proposition 3.4. Let L be a bounded lattice. For all n ∈ N−{0} we have Lm(L) E Ln(L) with
respect to some (r1, r1, s) when n = 2m. Moreover, the mapping � : Lm(L)× Lm(L) −→ Ln(L)
defined by

(x1, . . . , xm)� (y1, . . . , ym) = (x1 ∧L y1, x1 ∨L y1, . . . , xm ∧L ym, xm ∨L ym)

is an e-operator.

Proof. We shall present an n-dimensional lower retraction r1 : Ln(L) −→ Lm(L), an n-dimensional
upper retraction r2 : Ln(L) −→ Lm(L) and an n-dimensional pseudo-inverse s : Lm(L) −→
Ln(L) such that s ◦ r1 6 idLn(L) 6 s ◦ r2. Let

r1(x1, . . . , xn) = (x1, x3, . . . , xn−1)

and
r2(x1, . . . , xn) = (x2, x4, . . . , xn)

for all (x1, . . . , xn) ∈ Ln(L). It is clear that r1 and r2 are homomorphisms. Moreover, the
function given by s(x1, x2, . . . , xm) = (x1, x1, x2, x2, . . . , xm, xm) is an homomorphism such that

s ◦ r1(x1, . . . , xn) = s(x1, x3, . . . , xn−1)
= (x1, x1, x3, x3, . . . , xn−1, xn−1)
6 (x1, x2, x3, x4, . . . , xn)

and
r1 ◦ s(x1, x2, . . . , xm) = r1(x1, x1, x2, x2, . . . , xm, xm)

= (x1, x2, . . . , xm)
= idLm(L)(x1, x2, . . . , xm)

Therefore, r1 is an n-dimensional lower retraction which pseudo-inverse is s.
Analogously, it can be proved that r2 is an n-dimensional upper retraction with pseudo-

inverse s.
On the other hand,

1. clearly � is isotonic;

2. r1((x1, . . . , xm)� (y1, . . . , ym)) = r1(x1 ∧L y1, x1 ∨L y1, . . . , xm ∧L ym, xm ∨L ym) = (x1 ∧L
y1, . . . , xm ∧L ym) = (x1, . . . , xm) ∧Lm(L) (y1, . . . , ym);

3. r2((x1, . . . , xm)� (y1, . . . , ym)) = (x1, . . . , xm) ∨Lm(L) (y1, . . . , ym); and

4. r1(x1, . . . , xn) � r1(x1, . . . , xn) = (x1, x3, . . . , xn−1) � (x2, x4, . . . , xn) = (x1 ∧L x2, x1 ∨L
x2, . . . , xn−1 ∧L xn, xn−1 ∨L xn) = (x1, x2, . . . , xn).

Therefore, � is an e-operator.

Notice that there are other possibilities for m and n such that Lm(L) E Ln(L). For ex-
ample, m = 5 and n = 8. In this case r1(x1, . . . , x8) = (x1, x3, x5, x7, x8), r2(x1, . . . , x8) =
(x1, x2, x4, x6, x8) and s(x1, . . . , x5) = (x1, x2, x2, x3, x3, x4, x4, x5).

Corollary 3.3. Let S be a t-conorm on Lm(L) and n = 2m. The function SE� : Ln(L) ×
Ln(L) −→ Ln(L) given by

SE� (x,y) = S(r1(x), r1(y))� S(r2(x), r2(y))

for all x,y ∈ Ln(L), is a t-conorm on Ln(L).

Proof. Straightforward from Theorem 2.1 and Proposition 3.4.
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4 Final Remarks

The method of extending fuzzy connectives via e-operators presented in [8] proved to be efficient
to solve the challenge of defining extensions that are able to preserve the largest possible number
of properties of fuzzy connectives. This good results remain valid for n-dimensional t-conorms,
as we could see in this paper.

For further works, we would like still applying this extension method for other fuzzy operators
in order to test its efficiency in preserving the main properties of these operators.
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