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Otimização na Modelagem de Fluxo de Rios
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Resumo. O estudo propõe um método baseado no Lagrangeano Aumentado para estimar o co-
eficiente de Manning na modelagem de fluxo de rios, um parâmetro fundamental para simulações
hidráulicas. A pesquisa utiliza as equações de Saint-Venant aplicadas ao rio East Fork, nos EUA,
resolvidas por diferenças finitas difusas. Métodos livres de derivadas, como Nelder-Mead, BOBYQA
de Powell e sua atualização PRIMA, foram empregados para minimizar o erro entre os dados simula-
dos e observados. Os resultados demonstram que a abordagem proposta é eficiente, proporcionando
estimativas precisas do coeficiente de Manning.
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1 Introdução
A modelagem de canais e rios desempenha um papel fundamental na mitigação de desastres

naturais, como enchentes, e na redução de impactos decorrentes de ações humanas, como os rom-
pimentos das barragens de Mariana (2016) e Brumadinho (2019). Para que essa modelagem seja
eficaz e forneça informações confiáveis a partir de equações diferenciais, é essencial realizar uma
estimativa precisa dos coeficientes hidráulicos, um problema amplamente abordado na literatura.

O coeficiente de Manning, por exemplo, quantifica o atrito entre o fluido e o leito do canal,
mas não pode ser medido diretamente de forma prática. Assim, o desenvolvimento de métodos
eficientes para sua estimativa torna-se de grande importância. As abordagens mais comuns são de
natureza probabilística, como discutido em [12], baseando-se na geração de um grande número de
simulações e na seleção da solução mais adequada com base em critérios predefinidos. No entanto,
essas técnicas envolvem elevado custo computacional.

Diante disso, métodos baseados em otimização vêm ganhando destaque por oferecerem uma
alternativa mais eficiente para a estimativa do coeficiente hidráulico, com redução do tempo com-
putacional e aumento na precisão dos resultados.

No modelo proposto neste estudo, será utilizado métodos livres de derivadas amplamente utili-
zados na literatura. Diferentemente de abordagens que reduzem a dimensionalidade do problema
— como aquelas presentes em [4], [2] e [5] —, neste trabalho são consideradas todas as variáveis
do modelo, sem a realização de simplificações. Os resultados obtidos demonstraram a viabilidade
da abordagem, com estimativas satisfatórias mesmo na ausência de redução dimensional.

O estudo foi motivado pelos objetivos do grupo de Pesquisa e Ação em Conflitos, Riscos e Im-
pactos Associados a Barragens (CRIAB) da Universidade Estadual de Campinas (Unicamp), o qual
busca compreender e investigar as consequências decorrentes de desastres envolvendo barragens.

Este trabalho está organizado da seguinte forma: na Seção 2, são apresentadas as equações de
Saint-Venant e os dados do rio utilizados na modelagem. Na Seção 3, discute-se o problema de
minimização, o modelo baseado na função Lagrangeana e os resultados numéricos obtidos. Por fim,
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na Seção 4, são apresentadas as conclusões do estudo, acompanhadas de sugestões para trabalhos
futuros.

2 Modelagem do Rio East Fork com as Equações de Saint-
Venant

Existem diversas equações capazes de modelar o escoamento de um fluido. No caso tridi-
mensional, as mais famosas são as equações de Navier-Stokes. Em algumas situações, é possível
simplificá-las de diferentes formas, obtendo assim equações mais acessíveis para determinados con-
textos. Um exemplo clássico no caso unidimensional são as equações de Saint-Venant, amplamente
utilizadas para descrever o comportamento de rios e canais. As equações de Saint-Venant são
dadas por

At +Qx = 0

Qt + (QV )x + gAzx +
n2gQ|Q|
R4/3A

= 0,
(1)

em que A(x, t) representa a área transversal, Q(x, t) a vazão, V (x, t) a velocidade da água, z(x, t)
a cota de fundo, g a constante gravitacional, R o raio hidráulico e ng o coeficiente de Manning
(coeficiente de rugosidade). Nessa modelagem, são considerados apenas os cortes transversais do
canal como mostrado na Figura 1. Para mais informções veja [7] e [9].

Figura 1: Cortes transversais considerados das Equações de Saint-Venant.
Fonte: Moura Júnior 2002 [7].

Neste trabalho, utilizamos os dados do rio East Fork, disponíveis em Meade (1979) [6], localizado
no estado de Wyoming, EUA. O trecho analisado possui aproximadamente 3,3 quilômetros de
extensão, e os dados considerados correspondem ao período de 17 de maio a 17 de junho de 1979,
totalizando 31 dias de observações. As estações do rio, como ilustrada na Figura ??, são os pontos
de coleta de dados. Tais dados são referente aos dados iniciais e de contorno.
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Figura 2: Representação das estações de coleta de dados no rio East Fork (imagem (a)) e imagem
de satélite do mesmo trecho analisado (imagem (b)). Fonte: Ayvaz 2013 [1]

Para resolver as equações de Saint-Venant, será utilizado o método de diferenças finitas difuso
descrito em [9, p. 405]. Esse método foi escolhido porque, por ser explícito, o custo computacional
para simular os 31 dias do modelo é relativamente baixo.

3 Estimativa do Coeficiente de Manning com Lagrangeano
Aumentado

Considerando uma discretização da equação 1 no espaço em nx pontos equidistantes, tem-se
que em cada ponto da discretização existe um valor específico para o coeficiente de Manning.
Isso significa que, quanto maior o refinamento da malha, maior será o número de coeficientes que
precisam ser estimados. Nesse contexto, considerando-se nt instantes de tempo para os quais
existem dados disponíveis que não foram utilizados nas condições de contorno, pretende-se obter
ξ = (ξ1, ξ2, . . . , ξnx

) tal que, para todo i = 1, . . . , nt e j = 1, . . . , nx, a seguinte igualdade seja
satisfeita:

F i
j (ξ)− yobsi

j = 0.

Nessa expressão, F i
j (ξ) representa o valor previsto pelas equações do modelo no instante ti e

na posição xj , enquanto yobsi
j corresponde ao valor observado experimentalmente nesses mesmos

ponto e instante. Além de impor restrições à busca, como 0 ≤ ξ ≤ ξmax considerando-se que o
coeficiente de Manning não apresenta grandes variações ao longo do rio, ou seja, tende a permanecer
aproximadamente constante em média. Dessa forma, o problema pode ser formulado da seguinte
maneira:

min
(ξ,ξaux)

nx∑
i=1

(ξi − ξaux)
2

sujeito a Fi(ξ)− yobsi = 0 com i = 1, . . . , nt.
0 ≤ ξi ≤ ξmax com i = 1, . . . , nx.

(2)

Ou seja, será introduzida a variável ξaux para controlar a variação do coeficiente de Manning ao
longo do domínio, buscando minimizar as diferenças entre os valores ξi e ξaux para i = 1, . . . , nx.
O problema também leva em conta a necessidade de a equação representar o canal corretamente e
inclui uma restrição de intervalo para os coeficientes limitando o espaço de busca.
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Uma abordagem para resolver esse problema de minimização é utilizar o Lagrangiano Aumen-
tado, incorporando as restrições na função objetivo. Para mais detalhes, consulte [3]. Dessa forma,
o problema 3 é reformulado em subproblemas de minimização da seguinte forma:

min Lρk
(ξ, ξaux, λ) =

nx∑
i=1

(ξi − ξaux)
2 +

ρk
2

nt∑
i=1

(
Fi(ξ)− yobsi +

λk
i

ρk

)2

sujeito a 0 ≤ ξi ≤ ξmax com i = 1, . . . , nx

(3)

com k = 1, 2, . . .. Para minimizar esse problema do tipo caixa, serão utilizados o clássico método de
Powell BOBYQA [10], a atualização do BOBYQA descrita em [11] e o algoritmo de Nelder-Mead
[8].

Para resolver as equações diferenciais foi considerado uma discretização do rio de 101 pontos
equidistantes (nx = 101) e um passo de tempo de ∆t = 0.1s. Os dados utilizados para estimativa
do coeficiente foram os dados de elevação (z(x, t)) na estação x = 751m e na estação de saída
x = 3256m. Esses dados foram coletados a partir do dia 20 de maio, três dias após os dados
das condições iniciais, a cada 4 horas gerando 168 restrições no problema 3. Para a minimização
dos subproblemas (as funções de Lagrange), foram empregados três métodos: o algoritmo Nelder-
Mead, o software PRIMA (uma atualização do BOBYQA) implementado em Fortran 90 e o clássico
BOBYQA de Powell, programado em Fortran 77. Foram necessárias 5.054 avaliações de função
para o método Nelder-Mead, 2.630 para o software PRIMA e 4.196 para o método BOBYQA de
Powell.

Figura 3: Comparação dos resultados obtidos, elevação z(x, t) nos pontos x = 751m e x = 3256m,
com os dados observados (representados no gráfico por marcadores circulares).

Fonte: Autoria própria.
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4 Conclusão
Neste trabalho, foi proposta a solução de um problema inverso em hidráulica por meio de

um esquema de Lagrangeano Aumentado, combinado com métodos livres de derivadas, para a
estimativa do coeficiente de Manning, um problema amplamente estudado na área. A abordagem
baseada em otimização tem se mostrado cada vez mais eficaz, frequentemente superando métodos
tradicionais amplamente utilizados [1], [2], [5], [12]. Os resultados obtidos demonstraram que todos
os métodos testados foram capazes de modelar satisfatoriamente os dados do rio, representando
um avanço em relação ao trabalho de [4], que descreve adequadamente o canal apenas em um
ponto. Embora o método Nelder-Mead tenha apresentado uma solução razoável para o problema,
os softwares BOBYQA e PRIMA obtiveram resultados superiores, utilizando um número menor
de avaliações da função. Como proposta para trabalhos futuros, pretende-se aplicar diferenciação
automática ao esquema difusivo de Porto [9], em combinação com técnicas de minimização, como
o FISTA, o método do gradiente espectral e métodos quasi-Newton.
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