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Resumo. Esse trabalho propõe e analisa o desempenho do algoritmo Many-objective Optimization
Evolutionary Algorithm based on Dominance and Decomposition (MOEA/DD) aprimorado com es-
tratégias trigonométricas presentes no Sin-Cossine Algorithm (SCA) em problemas de engenharia
classificados como de otimização com muitos objetivos, isto é, aqueles que possuem mais de três
funções objetivo. Esse algoritmo foi denominado aqui por MOEA/DD-SCA e foi comparado ao
MOEA/DD para avaliar sua performance. Experimentos computacionais foram realizados nos pro-
blemas de engenharia bem conhecidos denominados Single-pass Work roll cooling design problem,
Water and oil-repellent fabric development, Water Resources Management e Optimal Power Flow
for Minimizing Fuel Cost, Voltage deviation, Active and Reactive Power Loss. Os resultados mos-
traram que o MOEA/DD-SCA foi promissor e competitivo, uma vez que obteve uma performance
global melhor quando comparado ao MOEA/DD nesses problemas, mostrando que as estratégias
trigonométricas adotadas foram capazes de aprimorar o desempenho do MOEA/DD. Além disso,
um método de tomada de decisão para extrair soluções da frente de Pareto é exibido e as soluções
são apresentadas para tomadores de decisão que não possuem preferência pelas demais soluções
obtidas em cada problema.
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1 Introdução
Problemas de otimização com muitos objetivos (MaOPs, do inglês Many-Objective Optimization

Problems) são problemas onde mais de três funções objetivo devem ser otimizadas simultaneamente.
Vários problemas de engenharia que são classificados como MaOPs podem ser encontrados na
literatura [6, 9]. O Single-pass Work roll cooling design problem, por exemplo, que diz respeito
ao processo de usinagem de laminação onde uma tira de metal é moldada, possui seis objetivos
conflitantes. Já o problema Water and oil-repellent fabric development, que surge na indústria
têxtil onde o objetivo é produzir tecidos de alto valor alcançando hidrofobicidade, permitindo
que o tecido repela água e óleo, possui sete objetivos conflitantes. A descrição completa desses
dois problemas está disponível em [9]. Outros exemplos podem ser encontrados em [6], tais como
o Water Resources Management, que possui cinco funções objetivo para satisfazer a demanda e
reduzir custos, respeitando as restrições hidráulicas, e o Optimal Power Flow for Minimizing Fuel
Cost, Voltage deviation, Active and Reactive Power Loss, que possui quatro funções objetivo para
determinar as configurações ideais de potência dos geradores que torna a operação da rede elétrica
econômica e eficiente.
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Um dos principais algoritmos para resolver MaOPs é o Many-Objective Evolutionary Algorithm
based on Dominance and Decomposition (MOEA/DD), proposto em [7]. Ele combina as aborda-
gens baseadas em dominância de Pareto e decomposição para equilibrar convergência e diversidade
no processo evolutivo, além de utilizar uma estratégia de decomposição para dividir o problema
original em vários subproblemas escalarizados, os quais são resolvidos simultaneamente. [10] rea-
lizou uma avaliação dos desempenhos de vários algoritmos baseados em decomposição e concluiu
que o MOEA/DD apresentou uma das melhores performances.

O Sine-Cosine Algorithm (SCA), proposto em [8], é um algoritmo de otimização que emprega
funções trigonométricas seno e cosseno para guiar a exploração do espaço de busca, atualizando a
posição das soluções candidatas utilizando oscilações senoidais e cossenoidais. [4] faz um estudo
de diversos trabalhos na literatura que utilizam SCA e recomendou algumas possíveis direções de
pesquisa futura. Dentre elas, estão combinar SCA com outros algoritmos, lidar com MaOPs e
aprimorar o SCA para ser aplicado em alguns problemas de otimização complexos e do mundo real
em diferentes áreas, como engenharia elétrica, civil e mecânica.

O MOEA/DD e o SCA são exemplos de Algoritmos Evolucionários (AEs), os quais tem mui-
tas aplicações em problemas de engenharia [2, 11]. Existem diversos trabalhos na literatura que
hibridizam dois ou mais AEs para resolver problemas de forma mais eficientes, potencializando as
vantagens de cada um deles [3, 15, 16]. Assim, esse trabalho propõe hibridizar o MOEA/DD com
o SCA, denominado aqui por MOEA/DD-SCA, e avaliar seu desempenho nos quatro MaOPs de
engenharia mencionados anteriormente. Experimentos computacionais foram realizados no indica-
dor de desempenho Inverted Generational Distance Plus (IGD+) [5], além da aplicação do Teste
de Wilcoxon para identificar diferenças estatisticamente significativas entre os resultados obtidos.
Um método de tomada de decisão para extrair soluções da frente de Pareto é exibido e as soluções
obtidas por esse método dão apresentadas.

O restante do artigo está organizado da seguinte forma: a Seção 2 define os problemas de
otimização e descreve os algoritmos evolutivos utilizados. Os experimentos computacionais e uma
análise dos resultados são apresentados e discutidos na Seção 3. Por fim, a Seção 4 revela as
conclusões e possíveis direções para trabalhos futuros.

2 Otimização Multiobjetivo e Algoritmos Evolutivos
Os MaOPs podem ser definidos como

min f(x⃗) = [f1(x⃗), ..., fP (x⃗)]
s.a. x⃗ ∈ D ⊆ Rn (1)

onde fp : Rn → R com p = 4, ...,m são chamadas de funções objetivo, Rn é chamado de espaço
das variáveis e Rm de espaço dos objetivos. Uma solução do MaOP domina outra quando é melhor
em pelo menos um dos objetivos e não é pior nos demais. A frente de Pareto de um MaOP é o
conjunto de soluções factíveis que não são dominadas entre si e superam todas as outras no espaço
de busca que não estão nesse conjunto.

Algoritmos baseados em decomposição trabalham decompondo um MaOP (Eq. (1)) em vários
subproblemas de otimização monobjetivo e os otimiza simultaneamente. Considere λ⃗1, . . . , λ⃗N um
conjunto de N ∈ N vetores peso, qualquer que seja N , e z⃗∗ = (zi, . . . , zm) um ponto de referência,
onde zi é o melhor valor encontrado até o momento para a função objetivo fi. Utilizando a função
de agregação Tchebycheff, a função objetivo do j-ésimo problema pode ser definida como

g(x⃗|λ⃗j , z⃗∗) = max{λj
i |fi(x⃗)− z∗i |} (2)

em que λ⃗j = (λj
1, . . . , λ

j
m), onde λj

i ≥ 0 com i = 1, . . . ,m e
∑m

i=1 λ
j
i = 1.
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Para cada λ⃗j , dentre os outros vetores peso, aqueles mais próximos são considerados seu con-
junto de vizinhança. Dessa forma, a vizinhança do j-ésimo subproblema será definida pelos sub-
problemas que possuem seu vetor peso na vizinhança de λ⃗j . Assim, forma-se uma população com
a melhor solução encontrada para cada subproblema (Eq.(2)), que será utilizada no restante do
algoritmo (reprodução e atualização das soluções). A Figura 1 ilustra um exemplo com 6 vetores
peso.

Figura 1: Algoritmos baseados em decomposição tem por objetivo minimizar a distância de cada
ponto da população até o ponto de referência ideal z∗. Fonte: Extraída de [10].

MOEA/DD propõe um paradigma unificado que combina abordagens baseadas em dominância
e decomposição para explorar o equilíbrio entre convergência e diversidade no processo evolutivo. O
MOEA/DD utiliza um método para gerar um conjunto de vetores peso uniformemente distribuídos
no espaço de busca. Cada vetor peso no MOEA/DD define um subproblema e, simultaneamente,
estima a densidade local de uma população.

O SCA se baseia nas propriedades das funções trigonométricas seno e cosseno, conhecidas por
sua periodicidade e oscilação entre -1 e 1, possibilitando uma exploração eficaz do espaço de busca.
Neste algoritmo, as soluções candidatas são adaptadas conforme a Equação (3) a seguir:

x⃗t+1
i =

{
x⃗t
i + r1 × sin (r2)× |r3v⃗ti − x⃗t

i| , r4 < 0.5

x⃗t
i + r1 × cos (r2)× |r3v⃗ti − x⃗t

ii| , r4 ≥ 0.5
(3)

onde r1, r2, r3 e r4 são números aleatórios entre 0 e 1, x⃗t
i é o i-ésimo elemento da população na

geração t e v⃗ é uma solução de destino.

3 Experimentos Computacionais

O algoritmo proposto, MOEA/DD-SCA, opera de maneira semelhante ao MOEA/DD, incor-
porando as estratégias trigonométricas do SCA. Os códigos em MATLAB do MOEA/DD estão dis-
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poníveis no PlatEMO [14], enquanto os códigos para o SCA pode ser encontrado em [8]. Os desem-
penhos do MOEA/DD-SCA e do MOEA/DD foram comparados nos problemas Single-pass Work
roll cooling design problem (SPWRCDP), Water and oil-repellent fabric development (WORFD),
Water Resources Management (WRM) e Optimal Power Flow for Minimizing Fuel Cost, Voltage
deviation, Active and Reactive Power Loss (OPFVARPL). Cada algoritmo foi executado 30 vezes
e cada aproximação da frente de Pareto obtida foi avaliada no indicador de desempenho IGD+, o
qual é calculado pela equação

IGD(A) =
1

|Z|

 |Z|∑
j=1

d̂mj

1/m

(4)

onde d̂j é a distância de z⃗j à solução mais próxima de A. O IGD+ é o IGD com a seguinte definição
de distância à região dominada:

d+(z⃗, a⃗) =

√
d+

2

1 + · · ·+ d+2
m =

√
(max {a1 − zi, 0})2 + · · ·+ (max {am − zm, 0})2. (5)

O algoritmo que obtiver menor valor do IGD+ será o mais eficiente. A Tabela 1 apresenta a média
dos valores do IGD+ obtidos pelos dois algoritmos. A existência de diferenças estatisticamente
significativas segundo o teste de Wilcoxon (p-valor < 0, 05) é indicada pelo símbolo (+).

Em um MaOP, o objetivo é apresentar ao tomador de decisão (DM, do inglês Decision Maker)
um conjunto de soluções Pareto-ótimas, isto é, aquelas que estão na frente de Pareto. Uma dessas
soluções é então escolhida pelo DM de acordo com suas preferências. Como se tem várias funções
objetivo conflitantes a serem minimizadas, o processo de tomada de decisão que visa determinar
a melhor alternativa pode ser interpretado como uma tomada de decisão multicritério (MCDM,
do inglês Multi-Criteria Decision-Making). Caso o DM não tenha nenhuma preferência entre as
soluções da frente de Pareto obtidas, como método de tomada de decisão MCDM das soluções da
frente de Pareto de cada problema, utilizamos aquela que está a uma menor distância do ponto
ideal, como sugerido por [1] e ilustrado na Figura 2. Na Tabela 2 são apresentadas as soluções
obtidas pelo MOEA-DD-SCA extraídas por esse MCDM.

Tabela 1: Médias dos resultados do IGD+ obtidos pelos algoritmos MOEA-DD e MOEA-DD-SCA. Os
melhores estão destacados em negrito, enquanto (+) indica p-valor < 0, 05 no teste de Wilcoxon.

MOEA-DD MOEA-DD-SCA

WRM

Mín 590,1626 240,7256
Média 718,5733 (+) 341,3983
Máx 1237,8 509,449
DP 157,1312 74,5562

OPFVARPL

Mín 0,5009 1,8613
Média 3,3801 3,0365
Máx 9,6416 5,2354
DP 2,6987 0,7943

SPWRCDP

Mín 26,9116 11,4744
Média 42,9388 (+) 27,1366
Máx 79,6632 49,1545
DP 12,4964 9,9421

WORFD

Mín 0,4743 0,5289
Média 70,6969 (+) 0,7522
Máx 96,1009 0,8084
DP 42,848 0,0469
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Figura 2: Tomada de Decisão para a escolha da solução final da frente de Pareto. Fonte:
Adaptada de [1].

Tabela 2: Soluções obtidas pelo MOEA-DD-SCA extraídas pelo método de tomada de decisão sugerido
por [1] e ilustrado na Figura 2.

WRM f(x⃗∗) = (0.0681, 0.0006, 1.4326, 1.3299, 0.0026)× 106

OPFVARPL f(x⃗∗) = (1.8349, 3.3266, 17.1283, 7.9461)
SPWRCDP f(x⃗∗) = (0.1349, 0.1799,−4.4714,−0.2714,−3.0471,−0.2559)× 104

WORFD f(x⃗∗) = (0.0152, 0.0094,−0.2893, 0.0010, 0.0005,−0.7507,−4.6689)× 104

4 Considerações Finais

Esse trabalho propôs e avaliou o desempenho do MOEA/DD-SCA, uma versão híbrida do
MOEA/DD com estratégias trigonométricas do SCA, em MaOPs de engenharia. Uma análise esta-
tística dos resultados foi conduzida usando o indicador de desempenho IGD+ e o teste de hipóteses
não-paramétrico de Wilcoxon para avaliar a presença de diferenças estatisticamente significativas
entre os resultados. Com base nos testes conduzidos, foi possível concluir que o MOEA/DD-SCA
demonstrou um desempenho global superior em relação ao MOEA/DD nos problemas adotados
neste trabalho, ganhando em todos com diferença estatisticamente significativa em 3 deles. So-
luções obtidas pelo MOEA/DD-SCA foram extraídas pelo método de tomada de decisão como
solução ótima para ser utilizada pelo tomador de decisão, caso ele não tenha preferências entre as
demais. Os resultados mostraram que o MOEA/DD-SCA foi promissor e competitivo, uma vez
que obteve uma performance global melhor quando comparado ao MOEA/DD nesses problemas,
mostrando que as estratégias trigonométricas adotadas foram capazes de aprimorar o desempenho
do MOEA/DD. Para trabalhos futuros, pode-se investigar o desempenho do MOEA/DD-SCA na
resolução de MaOPs de engenharia estrutural [17], bem como hibridizá-lo com busca local [12, 13].
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