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Resumo. Este trabalho apresenta uma abordagem de otimização multiobjetivo para o planeja-
mento de rotas turísticas de um dia no Rio de Janeiro. O problema foi modelado com quatro
objetivos: minimização dos custos e do tempo de deslocamento, e maximização das atrações visita-
das e da diversidade de bairros.
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1 Introdução
O planejamento de rotas turísticas apresenta desafios de otimização, especialmente quando múl-

tiplos critérios conflitantes precisam ser considerados simultaneamente. Ao estruturar um roteiro
que busque minimizar custos e tempos de deslocamento enquanto maximiza o número de atrações
visitadas e a diversidade de bairros, observamos objetivos naturalmente conflitantes que exigem
técnicas especializadas para sua resolução. Estas características tornam tal problema adequado
para abordagens de otimização multiobjetivo, possibilitando que turistas possam explorar eficien-
temente os pontos turísticos sem comprometer a qualidade da experiência, respeitando restrições
práticas como horários de funcionamento, orçamentos disponíveis e limitações de distância.

Os algoritmos evolutivos multiobjetivo surgiram formalmente em 1985 com o VEGA de Schaf-
fer [11], que revolucionou a abordagem para problemas com objetivos conflitantes. No entanto,
foi o NSGA-II desenvolvido por Deb et al. em 2002 [3] que trouxe avanços decisivos ao superar
limitações críticas: reduziu a complexidade computacional de O(MN³) para O(MN²), implemen-
tou elitismo ao combinar populações pai e descendente, e eliminou a necessidade de parâmetros de
compartilhamento através de um operador de comparação populacional que preserva a diversidade.

O planejamento de rotas turísticas no Rio de Janeiro representa um desafio particular devido à
diversidade de atrações distribuídas pela cidade, muitas das quais permanecem pouco exploradas
mesmo pelos moradores locais. Como Machado [6] observa em seu estudo sobre a evolução do
turismo na cidade, o Rio possui uma longa tradição de visitação que remonta ao período imperial,
tendo atraído admiração por sua paisagem desde o século XIX. Atualmente, o problema envolve
não apenas identificar pontos turísticos relevantes, mas otimizar roteiros considerando as limitações
de tempo e orçamento dos visitantes.
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Para viabilizar a modelagem do problema de roteirização turística, foram utilizadas duas prin-
cipais fontes de dados. O TripAdvisor [12] forneceu dados estruturados sobre as atrações cariocas.
A partir do ranking de popularidade da plataforma, foram selecionadas as 40 atrações mais bem
classificadas do Rio de Janeiro, extraindo-se informações de custos, tempos médios de visitação e
horários de funcionamento. Para as informações de deslocamento entre atrações, o estudo utilizou
dados do OpenStreetMap [8]. Por meio do OSRM e do serviço Mapbox [7], foram obtidas as ma-
trizes de tempo e distância para deslocamentos de carro e a pé entre todas as atrações mapeadas.
A formulação dos custos de transporte baseou-se em uma análise dos preços praticados por empre-
sas de transporte por aplicativo na cidade, chegando-se ao valor médio de R$6,00 por quilômetro
percorrido.

Com base nessas fontes de dados, nosso estudo se propõe a três objetivos fundamentais: im-
plementar e avaliar o algoritmo NSGA-II para resolver o problema de roteirização turística mul-
tiobjetivo; quantificar a qualidade das soluções geradas através da métrica de hipervolume; e
disponibilizar um aplicativo web de código aberto desenvolvido com Flask [9] e Dash [10] que
permita aos usuários navegar intuitivamente entre as diversas soluções otimizadas.

O restante deste trabalho está organizado da seguinte forma: a Seção 2 apresenta a funda-
mentação teórica sobre problemas de otimização multiobjetivo; a Seção 3 detalha a metodologia
adotada, incluindo a modelagem do problema; a Seção 4 expõe os resultados obtidos; e, por fim, a
Seção 5 apresenta as conclusões.

2 Referencial Teórico

Algoritmos genéticos, formalizados por Holland [5], representam técnicas de otimização inspi-
radas na evolução biológica que abordam problemas complexos através de populações de soluções
que evoluem por seleção, cruzamento e mutação. Esta analogia com processos naturais tem sido
aplicada no contexto turístico, como demonstrado por Choi et al. [2], que utilizaram estas téc-
nicas para otimizar o tempo total dos itinerários. Contudo, o problema de roteirização turística
mostra-se complexo, propício para o uso de algoritmos multiobjetivos.

A área de otimização multiobjetivo evoluiu significativamente desde o trabalho de Schaffer
[11], que desenvolveu o Vector Evaluated Genetic Algorithm (VEGA), até estudos de Zitzler, Deb
e Thiele [15], que evidenciou que nenhuma abordagem dominava completamente as demais em
todos os cenários, ressaltando a importância de escolher algoritmos adequados para cada contexto
específico. De particular relevância, Arbolino et al. [1] utilizaram otimização multiobjetivo no
planejamento sustentável do turismo, comprovando a superioridade desta técnica.

O NSGA-II, desenvolvido por Deb e colaboradores [3], consolidou-se como referência em oti-
mização multiobjetivo ao superar limitações críticas: reduziu a complexidade computacional de
O(MN3) para O(MN2), implementou um operador de comparação de aglomeração que preserva
a diversidade populacional sem parâmetros adicionais, e adotou uma estratégia elitista. Seu de-
sempenho competitivo justifica sua ampla adoção.

A avaliação de algoritmos de otimização multiobjetivo apresenta desafios significativos, como
demonstrado por Zitzler et al. [16], que identificaram a insuficiência de indicadores unários e a ne-
cessidade de métricas binárias para capturar relações de dominância entre soluções. O hipervolume
destaca-se como métrica Pareto-conforme, apesar de sua complexidade exponencial tradicional, li-
mitação enfrentada pelo algoritmo HSO (Hypervolume by Slicing Objectives) de While et al. [14],
que alcança eficiência superior através do processamento sequencial de objetivos, complementado
por Wang et al. [13] com técnicas de normalização adaptativa. Em nosso trabalho, implementamos
ambas as abordagens para avaliar a qualidade das soluções e aprimorar o processo de busca do
NSGA-II, garantindo cobertura mais uniforme da fronteira de Pareto para o problema de roteiri-
zação turística.
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3 Metodologia
O problema de planejamento de rotas turísticas é formulado como um problema de otimização

combinatória multiobjetivo. Uma solução consiste em um roteiro de visitas às atrações turísticas,
definindo a sequência de visitas, os modos de transporte entre elas e os horários de chegada e
partida em cada atração do Rio de Janeiro.

O modelo tem quatro funções objetivo (Equações 1-4): minimizar custo (Z1), tempo (Z2), e
maximizar atrações (Z3) e bairros distintos visitados (Z4):

Z1 =
∑
i,j∈A

xij(ei + cij(mij)) (Custo total) (1)

Z2 =
∑
i,j∈A

xij(tij(mij) + vi) +
∑
i∈A

wi (Tempo total) (2)

Z3 = −
∑
i∈A

min(1,
∑
j∈A

xij) (Qtd. atrações) (3)

Z4 = −|{bi|i ∈ A,
∑
j∈A

xij ≥ 1}| (Diversidade bairros) (4)

Onde cij(mij) = 0 se caminhada e R$6/km se carro.

As principais variáveis e parâmetros do modelo são:
twalk
ij Tempo de deslocamento a pé entre atrações i e j.
dij Distância em metros entre atrações i e j.
0, n Índices especiais representando ponto de partida e chegada do roteiro.
k Índice das atrações intermediárias (exclui o ponto de partida 0 e o destino final n).
xij Variável binária indicando se o turista vai da atração i para a j (1 sim, 0 não).
mij Variável binária para modo de transporte entre i e j: caminhada (0) ou carro (1).
ai Horário de chegada na atração i.
di Horário de partida da atração i.
tij Tempo de deslocamento entre i e j com transporte escolhido.
cij Custo do deslocamento entre i e j com transporte escolhido.
vi Tempo de visitação da atração i.
wi Tempo de espera na atração i quando chegada ocorre antes da abertura.
ei Custo de entrada na atração i.
bi Bairro onde está localizada a atração i.
Oi Horário de abertura da atração i.
Fi Horário de fechamento da atração i.

O modelo é sujeito às oito restrições a seguir (Equações 5-11), apresentadas na Tabela 1:

3.1 NSGA-II
Nossa implementação do Algoritmo 1 utiliza: (i) seleção por torneio com operador de compa-

ração por dominância e aglomeração (linhas 6-7); (ii) cruzamento específico para sequências de
atrações (linha 7); (iii) mutação que adiciona/remove/reordena atrações (linha 7); (iv) mecanismo
de penalização para rotas inviáveis durante a avaliação (linha 2). O algoritmo evolui ao longo de G
gerações (linha 5), combinando populações pai e descendente (linha 8) e aplicando ordenação não-
dominada rápida (linha 9) para produzir um conjunto diverso de roteiros turísticos Pareto-ótimos
(linha 17).
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Tabela 1: Conjunto de restrições do modelo de roteirização turística (Equações 5-11).

(5)
∑

i,j∈A

xij

(
tij(mij) + vi

)
+

∑
i∈A

wi ≤ 840 (Tempo diário)

(6) Oi ≤ ai ≤ di ≤ Fi, di − ai ≥ vi ∀i ∈ A :
∑
j∈A

xij ≥ 1 (Funcionamento)

(7) aj ≥ di + tij(mij) ∀i, j ∈ A : xij = 1 (Sequencialidade)

(8)
∑
j∈A

xij ≤ 1,
∑
i∈A

xij ≤ 1 ∀i, j ∈ A (Unicidade)

(9) mij =

{
0, twalk

ij ≤ 15,

1, caso contrário,
∀i, j ∈ A : xij = 1 (Preferência transporte)

(10) cij(mij) =

0, mij = 0,

6 ·
dij

1000
, mij = 1,

∀i, j ∈ A : xij = 1 (Custo carro)

(11)
∑
i∈A

xi0 = 1,
∑
j∈A

xnj = 1,
∑
i∈A

xik =
∑
j∈A

xkj ∀k ∈ A \ {0, n} (Continuidade)

Algorithm 1 Algoritmo NSGA-II adaptado para roteirização turística
1: Inicializar população P0 de tamanho N
2: Avaliar objetivos (custo, tempo, atrações, bairros)
3: Classificar P0 por não-dominância: F = (F1, F2, ...)
4: Calcular distância de aglomeração em cada Fi

5: for t = 0 até G− 1 do
6: Selecionar pais de Pt via torneio binário
7: Gerar Qt (tamanho N) via cruzamento e mutação
8: Rt = Pt ∪Qt (tamanho 2N)
9: F = (F1, F2, ...) = Ordenação-Não-Dominada(Rt)

10: Pt+1 = ∅ e i = 1
11: while |Pt+1|+ |Fi| ≤ N do
12: Calcular distância de aglomeração em Fi

13: Pt+1 = Pt+1 ∪ Fi e i = i+ 1
14: end while
15: Ordenar Fi por distância de aglomeração decrescente
16: Incluir primeiros (N − |Pt+1|) elementos de Fi em Pt+1

17: end for
18: return Soluções não-dominadas de PG

4 Resultados

Os experimentos foram realizados utilizando dados reais de 40 atrações turísticas do Rio de
Janeiro, selecionadas com base no ranking do TripAdvisor [12]. Esta base inclui pontos turísticos
distribuídos por 22 bairros, com tempos de visitação entre 60 e 240 minutos e custos variando de
gratuitos a R$ 844,37. As matrizes de distância e tempo foram construídas utilizando o Open Source
Routing Machine (OSRM) [8] e o serviço Mapbox [7], fornecendo dados precisos para deslocamentos
a pé e de carro.

Os experimentos foram executados em um processador Intel i7-11700K com 16GB de RAM no
sistema operacional Ubuntu 22.04 LTS. O algoritmo NSGA-II foi implementado em C++17. Após
testes iniciais, foi configurado com população de 100 indivíduos evoluindo por 100 gerações, utili-
zando taxa de cruzamento de 0,9 e taxa de mutação de 0,1. Realizamos 30 execuções independentes
para garantir robustez estatística.

Em média a execução do NSGA-II resultou em conjuntos de cerca de 70 soluções não-dominadas.
A qualidade foi avaliada através da métrica de hipervolume, implementada conforme o algoritmo
HSO [14]. O conjunto final alcançou um hipervolume normalizado médio de 0, 163, após aplicação
de técnicas de normalização adaptativa de Wang et al. [13].

As soluções obtidas apresentam uma ampla gama de resultados: desde roteiros econômicos com
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média de R$ 230,21 visitando 8 atrações em 7 bairros, até roteiros mais dispendiosos com média
de R$ 512,24 que incluem 9 atrações em 8 bairros. A diversidade de soluções permite aos turistas
escolherem roteiros alinhados com suas preferências (Figura 1).

Figura 1: Visualização de coordenadas paralelas das soluções não-dominadas. Fonte: Os autores.

Para facilitar a exploração das soluções geradas, desenvolvemos um protótipo de aplicativo web
denominado "Um Dia no Rio", que permite ao usuário visualizar detalhadamente cada roteiro
otimizado, como exemplificado na Figura 2.

5 Conclusão
Este trabalho apresentou uma abordagem de otimização multiobjetivo para o planejamento

de rotas turísticas no Rio de Janeiro utilizando o algoritmo NSGA-II. Os três objetivos propostos
foram alcançados: implementamos e avaliamos o NSGA-II para roteirização turística multiobjetivo,
adaptando os operadores genéticos para o contexto de sequenciamento de atrações; quantificamos
a qualidade das soluções através da métrica de hipervolume; e desenvolvemos o aplicativo web
"Um Dia no Rio"que permite aos usuários navegarem entre as soluções otimizadas.

O método proposto mostrou-se capaz de gerar roteiros turísticos de um dia que equilibram
quatro objetivos conflitantes: minimização dos custos e do tempo de deslocamento, e maximização
das atrações visitadas e da diversidade de bairros. Os roteiros respeitam restrições práticas essen-
ciais. Os resultados demonstraram a existência de diversas soluções não-dominadas, oferecendo ao
turista opções desde roteiros econômicos até itinerários que maximizam quantidade e variedade de
locais visitados.

Todo o código-fonte desenvolvido neste trabalho está disponível publicamente no repositó-
rio GitHub https://github.com/augustompm/OM-de-Rotas-Turisticas-Um-Dia-no-Rio, inclu-
indo a implementação do algoritmo NSGA-II, as estruturas de dados para representação do pro-
blema, as ferramentas de análise de hipervolume e o aplicativo web interativo. O arquivo README.md
contém instruções detalhadas para execução tanto do aplicativo web (pasta app/) quanto do algo-
ritmo de otimização.

Como trabalhos futuros, identificamos diversas direções promissoras, tais como explorar me-
todologias alternativas de otimização multiobjetivo, como MOEA/D ou SPEA2, e comparar seu
desempenho com o NSGA-II ou incorporar objetivos adicionais, como a preferência pessoal do
turista por tipos específicos de atrações.
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(a) (b)

Figura 2: Interface do aplicativo "Um Dia no Rio": (a) apresentação de um itinerário otimizado;
(b) visualização de arcos vinculados entre os objetivos, adaptado de [4]. Fonte: Os autores.
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