Aplicação do Cálculo Exterior Discreto para Simulação Numérica de Sistemas de GPR

A. S. Moura¹, W. G. Facco²

¹Departamento de Economia, Universidade Federal de Juiz de Fora,
Brazil 2 Coordenadoria de Engenharia Mecânica, Instituto
 Federal do Espírito Santo, Brasil

Palavras-chave: Formas Diferenciais, Equações de Maxwell, Propagação de onda, GPR.

Resumo: Apresenta-se neste trabalho o uso das formas diferenciais através da teoria do Cálculo Exterior Discreto para a simulação de uma classe de problemas de propagação de ondas eletromagnéticas, a saber os sistemas de radar de penetração de solo. Equações de Maxwell modificadas serão utilizadas na região de absorção do domínio computacional, esta abordagem é denominada CFS-PML (complex frequency shifted-perfectly matched layer). A discretização proposta neste artigo garante tanto a simplificação do algoritmo, como uma formulação mais elegante das expressões. As Equações de Maxwell são resolvidas no domínio do tempo em termos de campos elétrico e magnético, com a utilização de um o esquema do tipo leap-frog acoplado com uma convolução recursiva dentro da região PML de absorção. Dois exemplos serão apresentados, onde se trata a modelagem de cenários típicos de sistemas de radar de penetração de solo, que incluem meios com perdas.

1 Introdução

Para que se tenha um modelamento eficiente dos fenômenos eletromagnéticos envolvendo aplicações de Radar de Penetração de Solo (**Ground Penetrating Radar- GPR**)¹, é necessário a utilização de técnicas numéricas que resolvam problemas físicos com um grau elevado de dificuldade. Logo, a motivação principal deste trabalho está na aplicação de um método numérico para a solução de problemas que envolvam o uso dos georadares.

Neste artigo utiliza-se a teoria das formas diferenciais que fornece uma estrutura matemática para a teoria de campos eletromagnéticos [1]. O uso das formas diferenciais está baseado na representação das equações de Maxwell através da construção de dois sistemas matriciais em termos da intensidade do campo elétrico \vec{E} (representado como a formulação primal) e a intensidade do campo magnético \vec{H} (denotada como a formulação dual), respectivamente. A conexão entre a formulação primal e dual é estabelecida através do operador estrela de Hodge [2].

2 Equações de Maxwell Modificadas

Em um domínio bidimensional, as equações de Maxwell em termos do campo elétrico \mathcal{E} e da densidade de fluxo magnético \mathcal{B} dentro da região de absorção [3], serão descritas por:

$$\frac{d\mathcal{B}}{dt} = -d\left(\overline{\wedge}(t) * \mathcal{E}\right) \tag{1}$$

$$d\left(\overline{\wedge}(t) * (\star_{\nu} \mathcal{B})\right) = \star_{\epsilon} \frac{d\mathcal{E}}{dt} + \star_{\sigma} \mathcal{E}$$
⁽²⁾

onde \ast indica a convolução no tempo, d
 a derivada exterior e \star o operador estrela de Hodge.

¹Será usado em todo o texto a sigla em inglês para Radar de Penetração de Solo.

As coordenadas de $\overline{\wedge}(t)$ são definidos por:

$$\frac{1}{S_q(t)} = \frac{\delta(t)}{k_p} - \frac{\sigma_p}{\epsilon_0 k_p^2} e^{-\left(\frac{\sigma_p + \alpha k_p}{\epsilon_0 k_p}\right)t} u(t)$$
(3)

Fora da região de absorção assumi-se $\overline{\wedge}(t) = 1$ para se ter as equações clássicas de Maxwell. $\delta(t)$ é o delta de Dirac e u(t) é a função Heaviside, os parâmetros PML na Eq.(3) são determinados por:

$$k = 1 + (k_{\max} - 1) \left(\frac{\rho}{d}\right)^m \tag{4}$$

onde k_{\max} é o máximo valor de k na fronteira exterior. A condutividade σ é descrita como sendo

$$\sigma = \sigma_{\max} \left(\frac{\rho}{d}\right)^m \tag{5}$$

onde σ_{\max} é a condutividade máxima.

$$\sigma_{\max} = -\frac{m+1}{2\eta} d\ln(R) \tag{6}$$

e η é a impedância intrínseca do meio, e R é o coeficiente teórico de reflexão para uma incidência normal e m é a ordem do perfil utilizado e α é uma constante não dimensionada.

3 Equações Modificadas de Maxwell Semi-discretas

Considere a aproximação dos campos restritos aos elementos do domínio bidimensional Ω dada por:

$$\mathcal{E} = \sum_{i=1}^{3} e_i \omega_i^1 \tag{7}$$

$$\mathcal{B} = \sum_{m=1}^{1} b_m \omega_m^2 \tag{8}$$

onde $\omega_i^p, p = 1, 2$, é a *p*-forma de Whitney [4], associada com o i-ésimo *p*-simplexo. Os coeficientes $e_i \in b_m$ são a tensão elétrica ao longo da *i*-ésima aresta e o fluxo magnético através da *m*-ésima face f_m , respectivamente.

Discretizando-se o domínio Ω por uma malha simplicial [5], e utilizando as equações (7) e (8) em (1) e expandido-as para uma soma de componentes cartesianos, obtêm-se para cada elemento f_m a seguinte equação:

$$\sum_{i=1}^{3} \left(\sum_{q=\{x,y\}} \mathrm{d}\left(\omega_{iq}^{1}\right) \left(\frac{1}{S_{q}(t)} * e_{i}\right) \right) = -\omega_{m}^{2} \frac{db_{m}}{dt}$$
(9)

onde ω_{iq}^1 são as componentes da 1-forma de Whitney para $q = \{x, y\}$ e *m* é um número inteiro que identifica o triângulo na malha.

Utilizando-se as propriedades do produto exterior [3], a equação (9) pode ser escrita da seguinte forma:

$$\sum_{i=1}^{3} \left(\frac{1}{2} \operatorname{d} \left(\omega_{i}^{1} \right) \sum_{q = \{x, y\}} \left(\frac{1}{S_{q}(t)} \ast e_{i} \right) \right) = -\omega_{m}^{2} \frac{db_{m}}{dt}.$$
(10)

Após a aplicação do Teorema Generalizado de Stokes [6] na variedade triangular,T, a forma semi-discreta de (10) é obtida,

$$\frac{1}{2}\left[(\pm)1(\pm)1(\pm)1\right] \cdot \left[\sum_{q=\{x,y\}} \left(\frac{1}{S_q(t)} * \begin{bmatrix} e_1\\ e_2\\ e_3 \end{bmatrix}\right)\right] = \partial_t b_m.$$
(11)

Considerando a soma sobre todos os triângulos da malha na região PML, o sistema semidiscreto global de equações diferenciais ordinárias é

$$\frac{d\mathbf{b}}{dt} = -\frac{1}{2}\mathbf{C}\sum_{q=\{x,y\}}\mathbf{e}_q^* \tag{12}$$

onde **C** é uma matriz $N_f \times N_e$ que representa a derivada exterior discreta agindo sobre 1-formas discretas [7], **e** e **b** são vetores coluna de incógnitas e \mathbf{e}_q^* é dado por:

$$\mathbf{e}_{q}^{*} = \left[\frac{1}{S_{q}(t)} * e_{1}(t), \frac{1}{S_{q}(t)} * e_{2}(t), \dots, \frac{1}{S_{q}(t)} * e_{N_{e}}(t)\right]$$
(13)

Utilizando-se o método de Galerkin e as propriedades fundamentais dos espaços Whitney [6], a discretização da equação (2), para um triângulo será descrita por:

$$\sum_{q=\{x,y\}} \left(\left(\frac{1}{S_q(t)} * b_m \right) \begin{bmatrix} \pm 1\\ \pm 1\\ \pm 1 \end{bmatrix} \mathbf{M}_2(\nu)_{mm} \right) = \left[\mathbf{M}_1(\sigma)_{ij} \right] e_i + \left[\mathbf{M}_1(\epsilon)_{ij} \right] \frac{de_i}{dt}$$
(14)

onde i, j = 1, 2, 3 e $\mathbf{M}_1(\epsilon), \mathbf{M}_1(\sigma)$ e $\mathbf{M}_2(\nu)$ são matrizes de Hodge [7], definidas por:

$$\mathbf{M}_{p}\left(\alpha\right) = \int_{\Omega} \alpha w_{p}^{i} \cdot w_{p}^{j} d\Omega \tag{15}$$

onde α denota um dos campos escalares ϵ, ν, σ e p o grau da forma diferencial. Através da assemblagem de todos os elementos da malha teremos a seguinte equação matricial

$$\mathbf{M}_{1}\left(\epsilon\right)\frac{d\mathbf{e}}{dt} = \frac{1}{2}\mathbf{C}^{T}\mathbf{M}_{2}\left(\nu\right)\left[\sum_{q\in\{x,y\}}\left(\frac{1}{S_{q}}*\mathbf{b}\right)\right] - \mathbf{M}_{1}\left(\sigma\right)\mathbf{e}.$$
(16)

onde \mathbf{b}_q^* , se expressa da seguinte forma:

$$\mathbf{b}_{q}^{*} = \left[\frac{1}{S_{q}(t)} * b_{1}(t), \frac{1}{S_{q}(t)} * b_{2}(t), \dots, \frac{1}{S_{q}(t)} * b_{N_{f}}(t)\right]$$
(17)

Usando (3), cada componente dos vetores convoluídos em (13) e (17), pode ser escrita da seguinte maneira, respectivamente:

$$\frac{1}{S_q(t)} * e_i(t) = \frac{1}{k_{q,i}} e_i(t) + \phi_{q,i}(t)$$
(18)

$$\frac{1}{S_q(t)} * b_j(t) = \frac{1}{k_{q,i}} e_i(t) + \psi_{q,j}(t)$$
(19)

onde

$$\xi_{q,i}(t) = -\frac{\sigma_{q,i}}{\epsilon_0 k_{q,i}^2} e^{-\left(\frac{\sigma_{q,i}+\alpha k_q}{\epsilon_0 k_{q,i}}\right)^t} u(t)$$
(20)

$$\phi_{q,i}(t) = \xi_{q,i}(t) * e_i(t)$$
(21)

$$\psi_{q,j}(t) = \xi_{q,j}(t) * b_j(t).$$
(22)

A representação discreta da equação (20), pode ser dada por:

$$\xi_{q,i}[n] = \int_{n\Delta t}^{(n+1)\Delta t} \xi_{q,i}(\tau) d\tau$$

$$= g_{q,i} e^{-\left(\frac{\sigma_{q,i}+\alpha k_q}{\epsilon_0 k_{q,i}}\right) n\Delta t}$$
(23)

onde,

$$g_{q,i} = \left(\frac{\sigma_{q,i}}{k_{q,i}\left(\sigma_{q,i} + \alpha k_q\right)}\right)\left(h_{q,i} - 1\right)$$
(24)

$$h_{q,i} = e^{-\left(\frac{\sigma_{q,i} + \alpha k_q}{\epsilon_0 k_{q,i}}\right)\Delta t}.$$
(25)

Por (23)-(25) é possível escrever $\xi_{q,i}[n+1]$ em função de $\xi_{q,i}[n]$,

$$\xi_{q,i}[n+1] = \xi_{q,i}[n]g_{q,i}.$$
(26)

Por (26) obtêm-se a forma discreta das convoluções em (21) e (22),

$$\phi_{q,i}[n+1] = h_{q,i}e_i(n+1) + g_{q,i}\phi_{q,i}[n]$$
(27)

$$\psi_{q,j}[n+1] = h_{q,j}b_j(n+1) + g_{q,j}\psi_{q,j}[n]$$
(28)

Assim a discretização no tempo das equações em 12 e 16, com a aplicação de um esquema leap-frog para resolver o sistema é dada por

$$\mathbf{b}^{n+\frac{1}{2}} = \mathbf{b}^{n-\frac{1}{2}} - \frac{\Delta t}{2} \mathbf{C} \sum_{q} \left(\mathbf{K}_{q,e}^{n} + \boldsymbol{\Phi}_{q}^{n} \right)$$
(29)

$$\mathbf{N}_{1}\mathbf{e}^{n+1} = \mathbf{M}_{1}\left(\epsilon\right)\mathbf{e}^{n} + \frac{\Delta t}{2}\mathbf{C}^{T}\mathbf{M}_{2}\left(\nu\right)\sum_{q}\left(\mathbf{K}_{q,b}^{n+\frac{1}{2}} + \boldsymbol{\Psi}_{q}^{n+\frac{1}{2}}\right)$$
(30)

onde

$$\mathbf{N}_{1} = (\mathbf{M}_{1}(\epsilon) + \Delta t \mathbf{M}_{1}(\sigma))$$
(31)

$$\mathbf{\Phi}_{q}(t) = [\phi_{q,1}(t), \phi_{q,2}(t), \cdots, \phi_{q,N_{e}}(t)]$$
(32)

$$\Psi_{q}(t) = \left[\psi_{q,1}(t), \psi_{q,2}(t), \cdots, \psi_{q,N_{f}}(t)\right]$$
(33)

$$\mathbf{K}_{q,e}(t) = [e_1(t)/k_{q,1}, e_2(t)/k_{q,2}, \cdots, e_{N_e}(t)/k_{q,N_e}]$$
(34)

$$\mathbf{K}_{q,b}(t) = \left[b_1(t)/k_{q,1}, b_2(t)/k_{q,2}, \cdots, b_{N_f}(t)/k_{q,N_f} \right]$$
(35)

4 Simulações Numéricas

4.1 Levantamento de superfícies baseados em reflexão - 2d

Neste exemplo, será simulado um levantamento de superfícies baseado na reflexão, este sistema de GPR possui uma antena transmissora e receptora se encontram localizadas sobre a superfície da terra. Figura 1 apresenta a geometria computacional que é composta por três meios Ω_1 , Ω_2 e Ω_3 que representam respectivamente o ar, solo com permeabilidade relativa $\epsilon_r = 9$, permissividade relativa $\mu_r = 1$ e condutividade $\sigma = 1$ mS/m e outro solo com permeabilidade relativa $\epsilon_r = 25$, permissividade relativa $\mu_r = 1$ e condutividade $\sigma = 5$ mS/m. Dentro das regiões Ω_1 e Ω_2 são inseridos dois objetos com paredes eletricamente perfeitas.

A excitação tem a forma de um pulso Blackman-Harris no ponto (x, y) = (-1, 2.5) com frequência dominante de 300 MHz. Os parâmetros da função CFS-PML são m = 3, R = exp(-9), $k_{max} = 4$ e $\alpha = 0.004$, a região PML possui uma espessura de r = 1,5 cm, e é terminada por uma PEC.

Figura 2 mostra fotografias da componente \mathcal{E}_y do campo elétrico em vários instantes de tempo. É observado a propagação da onda através do ar e sua entrada na região de PML,

Figura 1: Modelo com propriedades elétricas.

Figura 2: Fotografias mostrando amplitude do campo \mathcal{E}_y em t = 3.38, 5.92, 8.46ns.

Figura 3: Componente de campo \mathcal{E}_y observada por diversas antenas receptoras para a antena transmissora localizada em (x, y) = (-1, 2.5).

observa-se a eficácia da CFS-PML para o meio ar. Nota-se também a diferença de amplitude da onda nas regiões Ω_1 e Ω_2 , devido as características elétricas dos meios.

Figura 3 mostra o comportamento da componente de campo elétrico \mathcal{E}_y para o tempo t variando de 0 a 70 ns e para todas as antenas receptoras localizadas na interface ar-solo y = 2.5, a antena transmissora está localizada em (x, y) = (-1, 2.5). Observa-se dois tipos de eventos em Fig.3, os eventos lineares que representam a passagem direta da onda entre o ar e o solo e os eventos hiperbólicos que são os reflexos dos objetos enterrados, nos dois tipos de solo, e as reflexões causadas pelas fronteiras entre os diversos meios.

4.2 Detecção de estruturas em concreto

Nesta seção apresenta-se a simulação da detecção de uma estrutura em concreto. Figura 4 apresenta estrutura simulada, que é composta por um túnel com 5 m de largura e 3 m de altura construído em um solo com permissividade relativa $\epsilon_r = 2,4$ e condutividade elétrica $\sigma = 1 \times 10^{-3}$ S/m. Os parâmetros da função CFS-PML são m = 2,55, R = exp(-13,37), $k_{max} = 4,004$ e $\alpha = 0.001$, a região PML possui uma espessura de r = 2 m, e é terminada por uma PEC.

O material do túnel é concreto com permissividade relativa $\epsilon_r = 5, 5$ e condutividade elétrica

Figura 4: Esquema de detecção de estrutura em concreto por GPR, composta por túnel de concreto construído em um solo com características elétricas com perdas.

 $\sigma = 0$ S/m. Para todos os materiais do esquema assumi-se uma permeabilidade relativa $\mu_r = 1$. A antena transmissora é modelada como um dipolo iluminada por um pulso Blackman-Harris com frequência dominante de 500 MHz.

Figura 5: Campo elétrico \mathcal{E} observado por antenas receptoras posicionadas na interface ar-solo para antena transmissora posicionada no centro do percurso. Linha tracejada em vermelho indica $t_{r_1} = 5,7816$ ns e linha tracejada em azul indica $t_{r_2} = 12,39$ ns.

Figura 5 apresenta radargrama que corresponde a uma medição feita sobre a interface ar-solo com a presença da estrutura em concreto (túnel). Percebe-se a ocorrência de eventos hiperbólicos o que indica os efeitos de reflexãocausados pela estrutura de concreto.

Figura 6: Radragrama obtido por antena receptora que se move simultaneamente com a antena transmissora na interface ar-solo.

Figura 6 apresenta radargrama que corresponde a uma medição feita sobre a interface arsolo para antenas transmissora e receptora se movendo simultaneamente. Novamente se tem a ocorrência de eventos hiperbólicos o que indica os efeitos de reflexão causados pela estrutura de concreto.

5 Conclusão

Um algoritmo foi apresentado para se resolver as equações de Maxwell em domínios truncados pela CFS-PML. A formulação apresentada usa a teoria das formas diferenciais como base de desenvolvimento, o que torna o algoritmo extremamente simplificado independente da dimensão do problema. A discretização é baseada puramente nas matrizes de incidência e de Hodge, ou seja, através das propriedades topológicas e da aproximação via método de Galerkin. Os resultados apresentados neste artigo mostram a alta capacidade de absorção da CFS-PML.

Para se verificar a eficiência do método duas simulações de sistemas de GPR em domínios bidimensionais são apresentadas. Uma tratando o problema de levantamento de superfícies e outra a detecção de uma estrutura em concreto. Em ambos os problemas foi considerado meios com perdas.

O uso das formas diferenciais não se restringe a sistema de GPR e pode ser aplicada a qualquer problema de propagação de onda eletromagnética em domínios bi e tridimensionais. A técnica de absorção apresentada neste artigo pode ser facilmente estendida para domínios tridimensionais.

6 Agradecimentos

Este trabalho foi financiado em parte pela Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG, Brasil, Conselho Nacional de Desenvolvimento Científico e Tecnológico -CNPq, Brasil, Fundação de Amparo à Pesquisa do Espirito Santo - FAPES, Brasil e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Brasil.

Referências

- K. Warnick, R. Selfridge, and D. Arnold, "Teaching electromagnetic field theory using differential forms," *Education, IEEE Transactions on*, vol. 40, no. 1, pp. 53–68, feb 1997.
- [2] B. He and F. L. Teixeira, "Geometric finite element discretization of maxwell equations in primal and dual spaces," *Phys. Lett. A*, vol. 349, no. 1-4, pp. 1–14, 2006.
- [3] A. S. Moura, R. R. Saldanha, E. J. Silva, M. F. Pantoja, A. C. Lisboa, and W. G. Facco, "Discretization of the cfs-pml for computational electromagnetics using discrete differential forms," *Microwave and Optical Technology Letters*, vol. 55, no. 2, pp. 351–357, 2013. [Online]. Available: http://dx.doi.org/10.1002/mop.27298
- [4] A. Bossavit, "Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism," *Physical Science, Measurement and Instrumentation, Management and Education - Reviews, IEE Proceedings A*, vol. 135, no. 8, pp. 493 –500, nov 1988.
- [5] —, Discretization of Electromagnetic Problems: The Generalized Finite Differences Approach, ser. in W.H.A. Schilders, E.J.W. Ter Maten (Eds): Numerical Methods in Electromagnetism (Handbook of Numerical Analysis, Vol. 13). Elsevier (Amsterdam), 2005.
- [6] —, Computational Electromagnetism: variational formulation, complementarity, edge elements. San Diego: Academic Press, 1994.
- [7] A. S. Moura, R. R. Saldanha, E. J. Silva, A. C. Lisboa, W. G. Facco, and N. Z. Lima, "A recursive sparsification of the inverse hodge matrix," *Magnetics, IEEE Transactions on*, vol. 48, no. 2, pp. 611–614, feb. 2012.