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38400-902 Uberlândia M.G.

E-mail: marcio@ufu.br

Rubens Sampaio Roberta Lima

Mechanical Engineering Department, PUC-Rio

Rua Marquês de São Vicente, 225; 38097, Rio de Janeiro

E-mail:rsampaio@puc-rio.br roberta 10 lima@hotmail.com.

Abstract: In this work a class of time-dependent electromechanical system is investigated. From

general results on existence and stability of periodic orbits, the dynamics of this system can be

approached in a mathematically rigorous way. These results generalize previous ones obtained

for autonomous electromechanical systems.
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1 Introduction

Nowadays the electromechanical coupling is a common fact in our technology. Moreover, the
dynamics of electromechanical systems is a topic that is worthy to research due to not only
for its importance in applications, but because it leads to very interesting dynamical systems
whose investigation is interesting by itself [2, 6, 7, 8, 9]. Motors are the most used actuator in
technology.

In this paper a theoretical analysis is performed in a very simple system composed by a cart,
fixed elastically to a wall and with viscous dissipation, and whose motion is driven by a DC
motor. The coupling between the motor and the cart is made by a mechanism called scotch

yoke. In this simple system the coupling is a sort of master-slave condition: the motor drives,
the cart is driven, and that is all.

This paper is organized as follows. In Section 2 the equations of motion are deduced from
first principles. In Section 3 the equations are rewritten in a dimensionless form and an Ansatz

is made for the derivation of the main results of the paper. Included in the Ansatz is the
careful selection of parameters that is crucial for the simplification of the computations. In
Section 4 three theorems are stated without proof due to space limitation. One of them, the
Theorem 4.3, establishes a result of stability which gives exactly what is necessary to show the
asymptotic stability of the angular speed and the current of the electromechanical system under
investigation. Then, in Section 5 these theorems are applied to our system. It is interesting
to say that this approach generalizes our results given in [1], because now one can deal with
time-dependent electromechanical systems whereas the earlier approach is inadequate for them.
It is worth to note these results were motivated by the numerical research of [7]. The main
conclusions are presented in Section 6.
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2 An Electromechanical System

The mathematical modeling of DC motors is based on the Kirchhoff’s law [5]. It is constituted
by the equations

lc′(t) + r c(t) + keα
′(t) = ν + χ sin (ω1 t) ,

jmα′′(t) + bmα′(t)− kt c(t) = −τ(t) ,
(1)

where t is the time, ν and χ are constant voltages, c is the electric current, α̇ is the angular
speed of the motor, l is the electric inductance, jm is the motor moment of inertia, bm is the
damping ratio in the transmission of the torque generated by the motor to drive the coupled
mechanical system, kt is the torque constant, ke is the motor electromagnetic force constant and
r is the electrical resistance. Figure 1 shows a sketch of a DC motor. The available torque to
the coupled mechanical system is represented by τ , that is the component of the torque vector
~τ in the z direction shown in Figure 1.
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Figure 1: Eletrical DC Motor

The system analyzed in this paper is composed by a cart fixed elastically to a wall with viscous
dissipation and whose motion is driven by the DC motor as sketched in Figure 2. The motor is
coupled to the cart through a pin that slides into a slot machined on an acrylic plate that is part
to the cart, as shown in Figure 2. The pin hole is drilled off-center on a disk fixed in the axis of
the motor, so that the motor rotational motion is transformed into horizontal cart motion. On
this cart is applied an elastic force −c1 x and a viscous damping given by −k1 x

′.
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Figure 2: Electromechanical System

To model the coupling between the motor and the mechanical system, it is assumed that
the motor shaft is rigid. Thus, the available torque to the coupled mechanical system, ~τ , can be
written as
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~τ(t) = ~d(t)× ~f(t) , (2)

where ~d is the eccentricity of the pin of the motor and ~f is the coupling force between the DC
motor and the cart. By the problem geometry, the module of ~d is the nominal eccentricity of the
pin, d. Besides this, the component of ~d that is perpendicular to the plane of the cart movement
is always zero and, the others horizontal and vertical components can be calculated from the
angular displacement α of the motor.

Assuming that there is no friction between the pin and the slot machined on an acrylic plate,
the vector ~f only has a horizontal component, f (the horizontal force that the DC motor exerts
in the cart). Thus, ~d and ~f are written as

~d(t) =





d cosα(t)
d sinα(t)

0



 , ~f(t) =





f(t)
0
0



 . (3)

Substituting (3) in (2), the available torque to the coupled mechanical system, ~τ , is

τ(t) = −f(t)d sinα(t) . (4)

Due to constraints, the cart is not allowed to move in the vertical direction. Due to the
problem geometry, the horizontal motion of the cart x and the angular displacement α of the
motor are related by the constraint

x(t) = d cosα(t) . (5)

Since the cart is modeled as a particle of mass m, it satisfies the equation

mx′′(t) = f(t)− k1 x
′(t)− c1 x(t) . (6)

Substituting (4), (5) and (6) in (1) one obtains the following system.

l c′ (t) + ke α
′ (t) + r c (t) = ν + χ sin (ω1 t) ,

(

d2 sin (α (t))2 k1 + bm

)

α′ (t) +
(

d2 m sin (α (t))2 + jm

)

α′′ (t)

+d2 m cos (α (t)) sin (α (t)) α′ (t)
2
− c1 d

2 cos (α (t)) sin (α (t))− c (t) kt = 0.

(7)

3 Dimensionless Formulation

By taking α′ (t) = u (t) , the system (7) the system can be rewritten as

α′ (t) = u (t) ,

c′ (t) =
χ sin (ω1 t)− ke u (t)− r c (t) + ν

l
,

u′ (t) = −
(

u (t)
(

d2 sin2 (α (t)) k1 + bm
)

+ d2 mu (t)2 cos (α (t)) sin (α (t))

− c1 d
2 cos (α (t)) sin (α (t))− c (t) kt

)

�

(

d2m sin2 (α (t)) + jm

)

(8)

Let us write (8) in dimensionless form. Consider the following dimensionless parameters and
functions given by

t =
l

r
s, α

(

l s

r

)

= p (s) , u

(

l s

r

)

=
r q (s)

l
, c

(

l s

r

)

=
ke w (s)

l
,

ω2 =
ω1 l

r
, v0 =

ν l

ke r
, v1 =

d2 m

jm
, v2 =

ke l kt

jm r2
, v3 =

bm l

jm r
, v4 =

χ l

ke r
, v6 =

l k1

mr
, v7 =

c1 l
2

mr2
.

(9)
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Let us assume the following Ansatz

q (s) = ω0 + ǫ z (s) , w (s) = k0 + ǫw1 (s) (10)

where
k0 =

v0 v3

v3 + v2
, ω0 =

v0 v2

v3 + v2
. (11)

Moreover, assume that
v1 = ǫ, v4 = ǫ v5. (12)

Note that in this dimensionless formulation the frequency of the external non-constant harmonic
excitation is given by ω2, see (9). Since an internal frequency has been introduced in (10) and
in order to search periodic orbits, let us take for granted the simplest case of resonance between
these frequencies. So, let us assume the following near 1 : 1 resonance condition given by

ω2 = ω0 + ǫ k, (13)

where k is a detuning parameter. It is worth to remark that ω0 can be interpreted as being
the speed of the disk under no-load condition of the motor (see equation 4 of [7]), a measurable
quantity. The detuning parameter describes how the speed varies when load is applied, that is
when d is increased.

Now the dimensionless time-variable will be redefined to put the system in a convenient
form. If one takes into account (9)-(13) into (8) , substitute

s =
s1

(ω0 + ǫ k)
(14)

into the resultant equation. Now, to simplify the notation, in the resulting equation, s1 is
renamed s, so from now on s has a different meaning. From that, by considering the following
change of variables

p (s) = s+ p1 (s) , (15)

one gets the following equations

p′1 (s) =
ǫ z (s)− ǫ k

ǫ k + ω0
,

w′

1 (s) =
v5 sin (s)− z (s)− w1 (s)

ǫ k + ω0
,

z′ (s) = −
(

v6 (ǫ z (s) + ω0) sin
2 (p1 (s) + s)

+
(

(ǫ z (s) + ω0)
2 − v7

)

cos (p1 (s) + s) sin (p1 (s) + s)

+ v3 z (s)− v2 w1 (s)
)

�

(

(ǫ k + ω0)
(

ǫ sin2 (p1 (s) + s) + 1
)

)

.

(16)

The theorems of the following section will allow us to arrive at the desired results.

4 Some Mathematical Results

Now, we are going to state a theorem on change of variables.
Consider Ω1 ⊂ Rn, Ω2 ⊂ Rm open subsets such that 0 ∈ Ω1 and 0 ∈ Ω2. And the following

C1 mappings:

h1 : R× Ω1 × Ω2 × (−ǫ0, ǫ0) → Rn, h2 : R× Ω1 → Rm,

h3 : R× Ω1 × Ω2 × (−ǫ0, ǫ0) → Rm
(17)

where ǫ0 > 0. Now consider the system

p′ = ǫh1 (t,p,x, ǫ) , (18)

x′ = Ax+ h2 (t,p) + ǫh3 (t,p,x, ǫ) . (19)
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Theorem 4.1. Let A : Rm → Rm be a linear mapping such that eTA − I is nonsingular.

Consider the system (18)-(19) where h1,h2,h3 are T periodic mappings in the variable t and

h2 is C2 mapping. Then there is a C2 mapping F : R×Ω1 → Rm, T periodic in the variable t,

such that if one takes the change of variables

p = p, x = y + F (t,p) , (20)

the system (18)-(19) can be rewritten as

p′ = ǫh1 (t,p,y, ǫ) , (21)

y′ = Ax+ ǫh3 (t,p,y, ǫ) , (22)

where h1, h3 are adequate C1 mappings, T periodic in the variable t.

For convenience of the reader, we state the following result given in [3], page 263, Lemma
1.4 (first part) or [4], page 38, Theorem 6.1.

Theorem 4.2. Consider the following system

p′ = ǫu1 (t,p,y, ǫ) , (23)

y′ = Ay + ǫu2 (t,p,y, ǫ) , (24)

where u1,u2 satisfy the same hypothesis that h1 of Theorem 4.1 and eTA − I is nonsingular.

Then, given β > 0 there is ǫ0 > 0 such that for all |a| 6 β with a ∈ Rn and |ǫ| 6 ǫ0 the system

p′ = ǫ

(

u1 (t,p,y, ǫ) −
1

T

∫ T

0
u1 (s,p (s) ,y (s) , ǫ) ds

)

, (25)

y′ = Ay + ǫu2 (t,p,y, ǫ) (26)

has a unique T periodic solution (p (s, a, ǫ) , y (s, a, ǫ)) such that

p (s, a, 0) = a, y (s, a, 0) = 0.

The next result gives “partial stability” of periodic solutions of the system (23)-(24) under
a mild hypothesis on A. To the best of the authors’ knowledge this result is a new one and has
interest by itself.

Theorem 4.3. In (23)-(24) assume that following conditions hold

a) The mappings u1,u2 are T -periodic in the variable t.

b) The linear mapping A : Rm → Rm has all its eigenvalues with negative real part.

c) The system (23)-(24) has a T -periodic solution solution (p0 (t, ǫ) , y0 (t, ǫ)) for all ǫ ≪ 1.

Then there are C > 0, γ > 0, an open subset Ω3 of Rm with 0 ∈ Ω3 and a bounded mapping

K : Ω3 × (−ǫ, ǫ) → Rn,

such that the solution (p (t,b, ǫ) ,y (t,b, ǫ)) of (23)-(24) with initial value

(p (0,b, ǫ) ,y (0,b, ǫ)) = (p0 (0, ǫ) + ǫK (b, ǫ) ,y0 (0, ǫ) + b)

satisfies the inequalities

|p (t,b, ǫ)− p0 (t, ǫ) | ≤ C e−γ t, |y (t,b, ǫ)− y0 (t, ǫ) | ≤ C e−γ t (27)

for all t > 0, b ∈ Ω3 and ǫ ∈ (−ǫ, ǫ).
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5 Asymptotic stability of the electromechanical system

The system (16) can be written in the form given by (18)-(19). Now, by using the change of
variables given by (20), where p = p1, x = (w1, z) and y = (w2, z1), one obtains

p′1 (s) = ǫ (Θ (s, p1 (s) , w2 (s) , z1 (s) , ǫ)− k)� (ǫ k + ω0) , (28)

w′

2 (s) =
−z1 (s)− w2 (s)

ω0
+ ǫ U (s, p1 (s) , w2 (s) , z1 (s) , k, ǫ) , (29)

z′1 (s) =
v2 w2 (s)− v3 z1 (s)

ω0
+ ǫ V (s, p1 (s) , w2 (s) , z1 (s) , k, ǫ) (30)

where

Θ (s, p1, w2, z1, ǫ) = (B41 sin (2 p1) +B42 cos (2 p1)) sin (2 s)

+ (B31 sin (2 p1) +B32 cos (2 p1)) cos (2 s) +B2 sin (s) +B1 cos (s) +B0 + z1

and U, V are very complicated functions and there is not enough space here to write them.
Note that all components of (28)-(30) depend on ǫ, k. By using Theorem 4.2 and the Implicit

Function Theorem one obtains there is a C1-mapping, k : (−ǫ1, ǫ1) → R, such that if k = k (ǫ)
in (28)-(30) for each ǫ ∈ (−ǫ1, ǫ1) there exists a 2π-periodic orbit. Of course each periodic orbit
depends on ǫ. From Theorem 4.3 one concludes that each periodic orbit is asymptotically stable
in the variables w2, z1. Note that w2, z1 stand for current and angular speed, respectively. From
the physical viewpoint, in this mechanical problem, these variables are the most important. The
“angle” p1 has only secondary importance. Using Regular Perturbation Theory and after a long,
but straightforward, computation one gets the form of the detuning parameter defined by 14 as
a function of the system properties:

k (ǫ) = −
ω0 v6

2 v3 + 2 v2
− ǫ

(

4ω2
0 v3 v

2
7 + v3 v

2
7 + v2 v

2
7 − 8ω4

0 v3 v7 − 2ω2
0 v3 v7

− 2ω2
0 v2 v7 + 4ω4

0 v3 v
2
6 + ω2

0 v3 v
2
6 + ω2

0 v2 v
2
6 − 12ω4

0 v
2
3 v6

− 3ω2
0 v

2
3 v6 − 6ω2

0 v2 v3 v6 − 3ω2
0 v

2
2 v6 + 24ω4

0 v2 v6 − 48ω6
0 v6

− 12ω4
0 v6 + 4ω6

0 v3 + ω4
0 v3 + ω4

0 v2

)

�

(

8ω0 (v3 + v2)

·
(

4ω2
0 v

2
3 + v23 + 2 v2 v3 + v22 −8ω2

0 v2 + 16ω4
0 + 4ω2

0

)

)

+O
(

ǫ2
)

.

(31)

Observe that the constant term in the expansion is due to the viscous dissipation. If there is
no viscous dissipation there is no constant term. To show a periodic orbit and some other orbits
being attracted to it an example is given in Figure 3. The initial conditions can be obtained
by using Regular Perturbation Theory again. But their algebraic formulae are really huge ones
and it is not worth to write them here.
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Figure 3: A periodic orbit and two attracted ones
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6 Conclusions

In this paper results on existence and asymptotic stability of periodic orbits of a class of elec-
tromechanical systems have been rigorously obtained by using a general approach. Here, asymp-
totic stability means asymptotic stability in relation to current and angular speed.

The general results, given in Section 4, afford to deal with autonomous and non-autonomous
electromechanical systems in a unified way. The next step will be to investigate systems with
more degrees of freedom in this area.
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