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Abstract: The steady-state saturated flow of an incompressible power-law fluid through a 
porous channel limited by two impermeable flat plates is modeled using a mixture theory, which 
considers fluid and porous matrix as superimposed continuous constituents of a binary mixture. 
After some simplifying assumptions, the mechanical model gives rise to a coupled system of 
ordinary differential equations that is simulated by employing a Runge-Kutta method coupled 
with a shooting strategy. Despite the strong nonlinearity of the problem, this simple 
methodology provides stable and accurate results, for both shear-thinning and shear-thickening 
behaviors.  
 
 
1. Introduction 

 
Non-Newtonian fluid flows through porous media present various important applications among 
which one could quote biological engineering (e.g. blood flow), petroleum engineering 
(demanding efficient extraction techniques and enhanced oil recovery techniques) and 
Hydrogeology (e.g. soil contamination by pollutants). These relevant applications justify the 
attention devoted to study this field. 

In this work a mixture theory model is employed, requiring constitutive assumptions for 
both the partial stress tensor (analogous to Cauchy stress tensor) and a momentum source that 
accounts for the momentum interaction between both constituents of the mixture. This source 
term acts as a drag force and may be reduced to the classical Darcy’s law considering some 
particular hypotheses. 

The non-linear two-point boundary-value problem in ordinary differential equations is 
simulated using a Runge-Kutta method coupled with a shooting technique. This latter consists is 
an iterative algorithm, which attempts to identify appropriate initial conditions for a related 
initial value problem that provides the solution to the original boundary value problem. With 
this strategy, the solution of the problem is reduced to finding the root of a real function. This 
methodology has been previously validated by comparing its results with the exact solution for 
a fluid flowing through a plane channel and also with the exact solution for a Newtonian fluid 
flowing through the permeable wall channel limited by two impermeable flat plates (Martins-
Costa et al., 2013).  
 
 
2. Mechanical Model 

 
The mechanical model combines mass and momentum balance equations for the fluid 
constituent with constitutive assumptions for the power-law fluid constituent. Supposing the 
solid constituent (that represents the porous matrix) rigid and at rest, it suffices to solve the 
motion equations for the fluid constituent, which are given by (Atkin and Craine, 1976; 
Rajagopal and Tao, 1995)  
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where !F = " !  represents the fluid constituent mass density (for a fluid fraction !  and an 

actual fluid density ! ), vF  its velocity, TF  the partial stress tensor associated with it and mF  
is an interaction force per unit volume acting on it, due to its interaction with the solid 
constituent of the mixture.   The role of the interaction force is more evident if the Principle of 
Virtual Power is considered (Costa Mattos et al, 1995) and, in this case, there is a precise 
framework that allows defining thermodynamically admissible constitutive equations. 
Constitutive relations for both TF  and mF  are required to build the mechanical model. It is 
important to note that for saturated flows the fluid fraction (! ) and the permeability are 
coincident. 

Considering a power-law fluid, Cauchy tensor may be stated as T = ! pI+ 2!(D "D)nD  
(Bird et al., 1987, Tanner, 2000), in which p is the hydrostatic pressure acting on the fluid, !  
and n are the power-law rheological parameters that characterize the fluid behavior and D is the 
strain rate tensor acting on the fluid. It is important to note that the usual power-law equation, 

given by ! = 2" !!!( )
m!1
D  (Slattery, 1999), in which !  is a consistency index and m a power-law 

index, could be recovered, making ! = 2(m!1)/2"  and n = (m !1) / 2 . Considering the above-
stated Cauchy tensor, the partial stress tensor and the momentum source, are given by (Martins-
Costa et al., 2000; Costa Mattos et al. 1995) 
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Assuming a steady-state flow of an incompressible fluid constituent though a porous 

channel with height 2H, equations (1)-(2) and the no-slip boundary condition give rise to the 
following boundary-value problem 
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vF = 0                                                                                            on y = ±H .

                     (3) 

 
At this point gravitational effects may be neglected and a fully developed steady-state 

flow may be considered so that the velocity field in equation (3) may be expressed as vF= w i, so 
that considering where wmax  as the maximum value of w, the following system is reached 
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Figure 1: Flow through a plane porous channel. 
 
3. Numerical Solution 

 
Equations (4) form a two-point boundary value problem, which can be approximated by using a 
fourth-order Runge-Kutta methodology coupled with a shooting technique, described below. 
The theory and practice of the numerical solution of two-point boundary value problems are still 
very active areas. Although not the first researcher to investigate the solutions of such kind of 
problem, Keller (1968; 1976) was one of the first authors to approach this subject. Those 
methods were and still are referred to as shooting methods. Several years later, Stoer and 
Bulirsch (1993) explored shooting techniques in detail. Shooting methods appear to be an 
interesting way to solve nonlinear boundary value problems. In particular in problems such as 

 
dz
dy

= f y,z( ) a ! y ! b

h z(a),z(b)[ ] = 0
                                                                                                (5) 

 
where z ! !n , f : [a,b]! !n  and h z(a);z(b)[ ] ! !m (m ! n) ; the related initial value 
problem can be associated 

 
du
dy

= f y,u( ) , a ! y ! b

u a( ) = s.
                                                                                               (6) 

 
Then, denoting the solution of Equation (12) by u ! u y;s( ) , we seek s such that  

 
!(s) = h s,u b;s( )[ ].                                                                                                          (7) 
 

If ŝ is a root of Equation (7) (h s,u b;s( )[ ] = 0 ), then z y( ) ! u y; ŝ( )  is a solution of 
Equation (5). Conversely, for any solution z u( )  of Equation (5) is a root of Equation (7). Then, 
the problem is reduced to compute the zero(s) of ! s( ) . It is not difficult to devise existence 
theorems for Equation (5), but it is not so easy to assure uniqueness. Only the computation of 
isolated solutions is studied in this paper; the important question of the possibility of multiple 
solutions is not discussed here.  

For the single channel with homogeneous porosity ! , the governing equations 
described in equation (4) may be conveniently rewritten by considering the change of variables 
z z1, z2( )  with z1 =w  and z2 = dw / dy , giving rise to the equivalent following system of 
ordinary differential equations 
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It is important to note that Equation (8) is valid solely for z2 ! 0 . However, from 

Equation (4) it may be verified that when z2 = 0! dw / dy = 0  and the value of z2  is defined, 

since w w
2n
= z1 z1

2n
= ! 1/!( ) dp / dx( ) . Therefore this relation allows circumventing the 

limitation of Equation (8) for z2 = 0 . 
The following boundary-value problem approximates the velocity profile at the porous 

channel: Find z1 : !H,+H[ ]! !  and z2 : !H,+H[ ]! ! , such that  
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The problem stated in Equation (9) is equivalent to finding the root of a scalar function 

represented as ! :!!! ; s !"(s ) = z1( y = +H ;s ) , where for a given s ! ! , representing 

an initial estimate, the value !(s)  is the value of the variable z1  at point y=+H, obtained by 
solving the following initial boundary value problem 
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Essentially, this procedure is a shooting technique in which s represents the initial 

estimate of the derivative dw / dy( )  at the point y = !H . The initial boundary value problem is 
approximated by a Runge-Kutta technique (Dahlquist and Bjorc, 1969) and the root of the 
function !(s)  is obtained by an unconditionally convergent procedure, the Bisection method 
(Dahlquist and Bjorc, 1969). It is important to remark that the above-proposed change of 
variables is only adequate when z2 ! 0 .   
 
 
4. Numerical Results  
 
As already expected, for very high permeabilities, present in filter applications, the influence of 
the Darcian term (!w)   – shown in Equation (2)  – is almost irrelevant, since as ! ! 0  the 
flow approaches the flow at a channel without a porous matrix, being almost a Stokes flow 
(dp / dx ! !(d2w / dy2 )) . On the other hand, for small permeabilities, present in important 
applications as reservoir simulations, the Darcian term is dominant. So, the choice of the 
numerical methodology to deal with this equation is very important to assure stability and 
accuracy of the method for all possible parameter values. 

It is important to note that wmax  occurs exactly when z2 = 0 , giving rise to numerical 
instabilities in a neighborhood of y = 0 , in the process of searching for the root of the function 
!(s) . Due to the behavior of the function !(s) , depicted in Figures 2 and 3, Newton-Raphson 
technique has some convergence shortcomings. Therefore, an unconditionally convergent 
methodology (such as bisection or regula-falsi) is required to find the root. It is important to 

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0244 010244-4 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0244


observe that distinct scales have been employed in the graphs depicted in these figures. The 
nonlinear nature of !(s)  implies that a small variation of the parameter dw / dy , for negative 
values of n causes a very large variation of the parameter y , in the vicinity of the root, as 
shown in Figure 2. A distinct nonlinearity is depicted in Figure 3, when a small variation of the 
parameter y , for n > 0 , in the neighborhood of the root, causes a huge variation of the 
parameter dw / dy . Obviously, the curve dw / dy  in the Newtonian case (n=0) is given by a 
straight line. 
 

 
Figure 2: Behavior of function !(s)  for negative values of n. 

 
 

 
Figure 3: Behavior of function !(s)  for positive values of n. 

 
As an example, results of flows of a power-law fluid through a porous channel 

considering shear-thickening and shear-thinning behavior are presented, obtained with the 
previously described methodology. 

 
 

(a) (b) 
 

Figure 4: Flow through a porous channel – velocity profiles: (a) n ! 0 ; (b) n ! 0 .  
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Figure 4 shows numerical results for the fluid constituent velocity profile, obtained 
varying the power-law index n and considering the flow depicted in Figure 1 with the following 
parameters: dp / dx = 10!2 Pa/m, ! = 10!3 Pa.sn, ! = 0.5 , ! = 1 , ! = "# = 0.5!10"3Pa.sn and 

K = 10!3m-2. It may be noted that the velocity profile becomes flatter as n decreases, in which 
there is shear-thinning behavior for n>0, shear-thickening for n>0 and Newtonian for n=0. 
Actually, even employing a distinct scale for negative values of n, the velocity profile is almost 
zero for n=-0.2.  

Figure 5 shows the behavior of the maximum velocity wmax  (in m/s), analytically 
computed and defined in Equation (4), for distinct values of the power-law index n, obtained 
considering the material parameters stated above and distinct values of the power-law index, 
showing that it approaches zero for n < !0.1 . This confirms the behavior depicted in Figure 4b.  

 

 
Figure 5: Behavior of the maximum velocity in a porous channel. 

 
 

It is worth noting that in the methodology presented in this work has been validated by 
analytical solutions for the flow of a non-Newtonian fluid through a channel without porous 
matrix and for the flow of a Newtonian fluid through a channel with two distinct adjacent flow 
regions: one with fluid only and another with this fluid flowing through a porous matrix. (See 
Martins-Costa et al., 2013). In both cases the numerical solutions and the analytical solutions 
are indiscernible within the precision of the graphs. 
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