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Abstract: In this article some computations of inertia flows of elasto-viscoplastic materials
down a one-to-four sudden expansion-contraction are performed. The phenomenon is model
by the mass usual mass and and momentum balance equations together with an Oldroyd-type
viscoelastic equation, modified to accommodate a dependence of both relaxation and retardation
time as the viscoplastic viscosity on the material structure level. Such a model is approximated
via a three-field Galerkin least-squares method in terms of extra-stress, velocity and pressure
fields. According to its design, the compatibility conditions between the extra-stress-velocity and
pressure-velocity finite element sub-spaces are bypassed, allowing the method uses equal-order
finite element interpolations – more details see [8] and [1]. In the computations, the relevant
adimensional elastic and viscous parameters are ranged in order to evaluate their influence on
the elasto-viscoplastic fluid dynamics.

Keyword: Viscoplastic material, elasto-viscoplasticity, inertia flows, three-field GLS formula-
tion.

The motivation

Non-Newtonian fluids flows are of vital relevance in many industrial processes. To cite only a
few, we have polymeric flows in the plastic processing, drilling fluids in the oil industry, the
manufacturing of shampoos and creams in the cosmetic business and the processing of milk and
yogurts in the dairy industry.

Non-Newtonian flows through complex geometries are very usual in those processes as, for
instance, significant changes of duct diameters and expansions and contractions of planar chan-
nels. Particularly, as viscoplastic fluids are involved[5], a given stress level – known as yield
stress – needs to be achieved in order to the material to start to flow; otherwise, the material
remains (almost) quiescent [2]. The former is called yielded regions and the latters is known
as unyielded regions. The locus of points at stress equals the yield limit is denoted as yield
surfaces. Some recent experiments have demonstrated that elasticity is present in unyielded
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region, playing an important role in the accurate determination of the morphology of unyielded
regions.

The model employed in the present paper is suitable to apparent yield stress liquids, and
is able to predict the elastic behavior often observed in these materials. In the present work
we employ a novel elasto-viscoplastic constitutive model to predict the elastic effects in the
unyielded regions of the flow through a planar abrupt expansion-contraction. To analyze the
qualitative performance of the proposed model, the predicted results are compared with the
experimental ones reported in [4] for asymmetric expansion-contractions.

An elasto-viscoplastic model

The non-thixotropic elasto-viscoplastic model used herein originates from the one proposed in
[7] when the equilibrium time teq equals zero, The equation for stress has the same form of the
one for the Oldroyd-B model,

τ + θ1τ̌ = 2ηeq
(
D + θ2Ď

)
(1)

where the upper-convected time derivatives of τ and γ̇ are given by

τ̌ ≡ −τu−∇uTτ and Ď ≡ −γ̇∇u−∇uT γ̇ (2)

The quantities θ1 and θ2 that appear in Eq. (1) are respectively the relaxation and retardation
times. They are defined as

θ1 =

(
1− η∞

ηeq

)
ηeq
Geq

(3)

θ2 =

(
1− η∞

ηeq

)
ηeq
Geq

(4)

The definitions of θ1 and θ2 above involve the equilibrium viscosity ηeq, the equilibrium
elastic modulus Geq, and the infinite-shear-rate viscosity η∞.

In the constitutive model, ηeq and Geq (and hence θ1 and θ2) are assumed to be functions
of the equilibrium structure parameter λeq, which is related to the equilibrium viscosity ηeq(γ̇)
(i.e. the flow curve of the material) through

λeq(γ̇) =
ln ηeq(γ̇)− ln η∞

ln ηo − ln η∞
(5)

where η0 is the zero-shear-rate viscosity and γ̇ ≡
√

1
2 tr γ̇2 is the intensity of γ̇. The equilibrium

structure parameter λeq is thus a scalar quantity that varies within the range [0, 1] and gives a
measure of the structuring level of the microstructure, such that λeq = 0 when the structuring
level is minimum and λeq = 1 when the material is fully structured. It is clear that this
formulation assumes that there is a one-to-one relationship between the structuring level and
the viscosity level. The equilibrium structure parameter λeq can thus be seen as a normalized
equilibrium viscosity function.

The dependence of the relaxation and retardation times on the structure parameter lends to
the model a remarkable predictive capability, since in this way the predicted mechanical behavior
ranges from the purely elastic up to the purely viscous behavior – see [7] for more details.

In this work, we employed the following expression for the equilibrium viscosity [3]:

ηeq(γ̇) =

[
1− exp

(
−ηoγ̇
τy

)]{
τy
γ̇

+Kγ̇n−1
}

+ η∞ (6)

In this equation, τy is the yield stress, K the consistency index, and n the power-law index.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0245 010245-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0245


As discussed in previous publications [6],[7] and [8], three shear rates mark important tran-
sitions in the flow curve, namely γ̇o, γ̇1, and γ̇2. These shear rates are given by:

γ̇0 =
τy
η0

, γ̇1 =
(τy
K

)1/n
, γ̇2 =

(η∞
K

)1/n−1
(7)

Following in [8], the dependence of the equilibrium elastic modulus Geq on the equilibrium
structure parameter λeq is given by:

Geq = G0e
m
(

1
λeq
−1

)
(8)

In this equation, G0 is the structural elastic modulus of the fully structured material, and
m is a positive scalar parameter that dictates the sensitivity of Geq with λeq.

Numerical Simulations

Figure 1 shows a sketch of the analyzed geometry, a planar channel with a sudden expansion
followed by a contraction. The employed boundary conditions to perform the numerical simula-
tions are uniform parallel velocity u0 at the channel inlet and outlet, no-slip and impermeability
on channel walls and symmetry conditions along the channel centerline (∂x2u1 = u2 = τ12 = 0).
The expansion-contraction aspect ratios on height (H/h) and width (L/h) are set as 6.3.

In order to guarantee fully-developed flow regions upstream and downstream channels, the
mesh lengths either upstream or downstream of the expansion-contraction set equal to 20h.
After a mesh independence procedure that compares the transverse dimensionless stress profile
at the expansion-contraction center for each consecutive mesh refinement, the selected mesh,
with 5, 200 bi-linear Lagrangian (Q1) finite elements, presents an overall error less then 1% when
compared to the next more refined mesh [9]. A detail of the central portion of the employed
mesh is depicted on Fig. 2. It’s important mentioning that in all simulations performed in this
work, η∞γ̇1/τ0d = 10−2, γ̇0d/γ̇1 = 10−4, τ0/τ0d = 2 and m = 2 – [4].

Figura 1: Geometry and boundary conditions.

An initial note must be made about the flow yield surfaces, which are usually defined as the
surface where τ = τ0. However, as γ̇ varies some orders of magnitude with τ on the vicinity of
τ = τ0, this criterion may be inaccurate, once is susceptible to spurious oscillations. A more
precise option is to defined the yield surfaces as the locus of points where γ̇ = γ̇0, with γ̇0 = τ0/η0
– see [7], for details.

The influence of the material elasticity in the morphology of the flow unyielded regions is
shown in Fig. 3, for ρ∗ = 0, J = 5 × 103, n = 0.5 and U∗ = 0.1, with θ∗0 equals to 0.75 and
25. For the higher value of the microstructure shear modulus (θ∗0 = 25) the unyielded zones
(the black ones in figures) are almost fore-aft symmetric in the absence of inertia and elasticity
effects. For (θ∗0 = 0.75), it is noted the tilting of the cavity unyielded region, what happens
when the material is still highly structured and the stress is in the vicinity of the yield stress
(highest possible stress while the material is highly structured).
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Figura 2: The central portion of the employed mesh.

(a)

(b)

Figura 3: Effect of the elasticity on the flow, for ρ∗ = 0, U∗ = 0.1, J = 5 × 103 and n = 0.5 –
Yielded and unyielded regions for (a) θ∗0 = 0.75 and (b) θ∗0 = 25; elastic strain for (c) θ∗0 = 0.75
and (d) θ∗0 = 25.

Figure 4 show the effects of the dimensionless flow rate on the unyielded regions for ρ∗ = 0,
J = 5 × 103, n = 0.5 and θ∗0 = 1.0, with U∗ equals to 0.01 and 1.0. Large elastic strains
occur throughout the flow domain for the smaller value of U∗, while are reduced for U∗ = 1.0.
This behavior is observed due to the higher stress levels induced increasing the flow rate, which
implies low structuring levels and hence high Geq. The same reasoning can be used to explain
the trend observed for the unyielded regions, decreasing monotonically as the dimensionless inlet
velocity is increased.

The effect of inertia is illustrated on Fig. 5 for θ∗0 = 1.0, J = 5× 103, U∗ = 0.1 and n = 0.5,
with ρ∗ = 1.0 and (b) ρ∗ = 500. The elastic strain field suffers minor effects of inertia once,
for a fixed microstructure shear modulus, the dimensionless inlet velocity remains unchanged.
Due to the type of scaling employed in this work [7], the changes on the flow field entailed by
inertia are decoupled from the changes entailed by the imposed changes in the flow intensity.
The shape of the cavity yield surface, however, changes significantly in the presence of inertial
effects: while elasticity tends to tilt this yield surface counter-clockwise, inertia has the opposite
effect. The cavity yield surface shown for ρ∗ = 500 is tilted clockwise, despite the high level of
elasticity.
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(a)

(b)

Figura 4: Effect of the dimensionless flow rate on the flow, for ρ∗ = 0, θ∗0 = 1.0, J = 5 × 103

and n = 0.5 – Yielded and unyielded regions for (a) U∗ = 0.01 and (b) U∗ = 1.0; elastic strain
for (c) U∗ = 0.01 and (d) U∗ = 1.0.

(a)

(b)

Figura 5: Effect of the inertia on the flow, for θ∗0 = 1.0, J = 5 × 103, U∗ = 0.1 and n = 0.5 –
Yielded and unyielded regions for (a) ρ∗ = 1.0 and (b) ρ∗ = 500; elastic strain for (c) ρ∗ = 1.0
and (d) ρ∗ = 500.

Final Comments

Numerical finite element approximations for inertial flows of elasto-viscoplastic materials are
herein performed. The mechanical modeling employed is made-up of the usual mass and mo-
mentum conservation for incompressible fluids, coupled with an Oldroyd-B–type equation and
the the SMD viscoplastic function modified to be dependent of the flow strain rate. Such a
model is approximated via a three-field Galerkin least-squares method in extra-stress, pressure
and velocity.

Results intended to estimate the topology of yield surfaces as well as the determination of
distribution of structuring level throughout the channel. The computational domain is parti-
tioning into a bi-linear Lagrangian finite element mesh for all primal variables. The following
non-dimension governing parameters are varied: the relaxation time, the flow intensity, the jump
number, the power-law index and the equilibrium time. All simulations attest the relevance of
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the right determination of the structuring level on the accurate computation of the shape end
location of unyielded regions, along with the strong influence of elasticity on the asymmetry of
yield surfaces.
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