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Abstract: Column generation and branch-and-price methods are currently essential tools for
solving many classes of integer programming and combinatorial optimization problems. This pa-
per addresses how to improve the performance of these methodologies by using the interior point
algorithm. The purpose is to summarize the main developments proposed in the thesis “Theo-
retical and computational issues for improving the performance of linear optimization methods”
which has been awarded with the “Doctoral Prize Odelar Leite Linhares” in 2014. As the com-
putational experiments indicates, the interior point method is more than an alternative to the
simplex method. Indeed, it offers advantageous features which can be used to stabilize the column
generation technique and improve the overall performance of the branch-and-price method.
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1 Introduction

The integer programming methodologies have evolved significantly in the last decades. Cur-
rently, computer codes based on these methodologies are able to solve large-scale challenging
problems which no one could imagine to solve a few decades ago. The column generation (CG)
technique is an example of a successful method which was first used in the end of the Fifties [8]
and then started a research area which has been very active [15]. The researches in this context
have focused not only on applying CG to solve optimization problems, but also on ways to
improve this methodology in order to solve problems faster as well as to solve more challenging
problems. The combination of CG with the branch-and-bound method results in the branch-
and-price (BP) method [4], which is paramount for solving many classes of integer programming
problems, such as vehicle routing, cutting stock and lot sizing problems.

The CG technique was born from the need of improving the performance of the simplex
method. Indeed, as reported by Ford and Fulkerson [8], the purpose of CG was to avoid the
full enumeration of columns when solving a formulation of the multi-commodity network flow
problem in which “the number of variables was too large to be dealt with explicitly”. Since in
a given iteration of the simplex method it is enough to consider only the variables which are
currently basic, the remaining variables in the problem were treated implicitly by modifying
the usual pricing operation. Instead of explicitly computing the reduced costs of each non-basic
variables, the authors proposed to solve a subproblem which was able to generate a non-basic
column with the smallest reduced cost. This modification led to the CG technique.

Possibly due to its origin in the simplex method, the CG technique is still strongly linked
with this method. However, there is no need to link these two approaches, specially for the
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following two main reasons. First, the CG technique is the dual counterpart of the cutting plane
method [14], which has originally no link with the simplex method. Second, it has been shown in
the literature that much can be gained in efficiency by using non-optimal dual solutions within
CG [12, 10, 17].

Similarly, most implementations of branch-and-price and branch-price-and-cut methods rely
on the simplex method [15, 4]. Hence, columns and valid inequalities are generated by using
optimal solutions which correspond to extreme points. Branching is also performed by using
optimal solutions in general. Again, there is no need to use the simplex method in this con-
text. Actually, optimal solutions should rather be avoided when generating columns and valid
inequalities, if well-centered suboptimal solutions are available [21].

In this paper we reinforce that the interior point method not only can, but should be used
within CG and BP methodologies. Even though earlier efforts in this direction have been
presented in the literature (see e.g. [17, 13, 16, 5, 18, 7, 21]), it is still usual to find papers in
which the authors have tried using the interior point algorithm in this context but have reported
very limited success. Such unsuccessful attempts are probably justified by the fact that using
the interior point method within CG and BP is not straightforward. Indeed, this task should
not be understood as simply replacing the simplex method. These two linear programming
methodologies differ significantly and offer different advantages. When using each of them we
should exploit the best they have to offer. Therefore, we aim at describing the main challenges
regarding these combinations and the ways of using the advantageous features offered by the
interior point method. By presenting computational experiments we provide evidence that
using an interior point method is a natural way of stabilizing the CG technique and improving
the overall performance of the BP method. The experiments were run by using the PDCGM
library which is publicly available for download at: http://www.maths.ed.ac.uk/~gondzio/

software/pdcgm.html.
The remainder of this paper is organized as follows. Section 2 describes the primal-dual

column generation method, which is an efficient way of combining CG and the primal-dual
interior point algorithm. Section 3 shows how the primal-dual interior point algorithm can be
used to improve the performance of the BP method. In these two sections, we present the
results of experiments with different classes of problems to illustrate the benefits of employing
the primal-dual interior point method. Finally, Section 4 presents the concluding remarks.

2 Column Generation with the Interior Point Method

We are interested in solving a linear programming problem with a huge number of variables
(columns), which we call master problem (MP). Assume that we know a rule which can be used
to generate all the columns in the MP. Even if it was possible to enumerate all these columns, it
would be very inefficient to solve the MP if we explicitly consider them. Instead, we may solve
the problem iteratively by using the CG technique. First, we solve a reduced version of the MP
in which only a relatively small subset of columns is explicitly available. We call this reduced
version a restricted master problem (RMP), which can be represented as follows

zRMP := min
∑
j∈N

cjλj , (1a)

s.t.
∑
j∈N

ajλj = b, (1b)

λj ≥ 0, ∀j ∈ N, (1c)

where λj ∈ R are called the master variables; parameters cj ∈ R and aj ∈ Rm are the cost and
the coefficients of the j-th column in the problem, respectively; b ∈ Rm is the independent vector;
and N is the set of indices of columns which have been explicitly generated. The optimal solution
of the RMP is also an optimal solution of its corresponding MP, only if we cannot generate any
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other column with a negative reduced cost. To verify that without explicitly generating new
columns, we solve the following pricing subproblem:

zSP (u) := min{0; cj − uTaj | (cj , aj) ∈ C}, (2)

where ū ∈ Rm is a dual solution associated to constraints (1b) and C is the set of all columns
which can be generated for the MP. Notice that (cj , aj) is the vector of variables in the subprob-
lem. By using the dual solution ū, the pricing subproblem must be able to generate at least one
new column with a negative reduced cost, in case any exists. The new column is then added to
the RMP which should be reoptimized, leading to a new iteration of the CG technique. In case
no column with a negative reduced cost can be generated, the optimal solution of the current
RMP is also an optimal solution of the MP and, therefore, the CG procedure terminates.

Combining the CG technique with the interior point algorithm is not straightforward. To
be effective, this combination should involve more than just replacing the simplex method with
the interior point algorithm. Indeed, Table 1 summarizes a computational experiment which
supports this statement. In the table, we present the results of using the standard CG to solve
272 instances of the one-dimensional cutting stock problem (CSP), 87 instances of the vehicle
routing problem with time windows (VRPTW), and 751 instances of the capacitated lot sizing
problem with setup times (CLSPST). For details regarding these instances and problems, see [12].
Two versions of the CG method were implemented using the IBM CPLEX linear programming
solvers. In both versions the RMPs are solved to optimality, but using one of the following two
methods: the primal simplex method and the interior point method (barrier) without crossover
(results of the dual simplex method are not included as this method was inferior to the primal
in the CG context). For each class of problems, Table 1 shows for the two versions: the total
number of iterations (Iter), the total CPU time spent solving the pricing subproblems (Pricing)
and the total CPU time to solve the instances (Total), both in seconds, for all the instances in
each class. The results support the point that using the interior point algorithm for obtaining the
optimal solutions of the RMPs typically does not improve the performance of the CG technique.
However, it does not mean that the interior point method is useless in the CG context. Indeed,
when appropriately exploited, this algorithm offers advantageous features which can significantly
improve the column CG method. One of the first advantages is that interior point methods
can effectively stabilize CG. Indeed, when the simplex method is used to optimize the RMP,
the dual optimal solutions correspond to extreme points of the dual feasible set, which has
a negative impact on the performance of CG. In fact, extreme optimal solutions oscillate too
much between two consecutive iterations. This behavior leads to a slow convergence of the
CG technique, specially in the last iterations. To overcome this, we may use non-optimal dual
solutions instead. In fact, optimal solutions are necessary only at the last iteration of the CG
technique (to prove optimality).

CG with simplex (primal) CG with interior point (barrier)
Iter Pricing (s) Total (s) Iter Pricing (s) Total (s)

CSP 18252 5173.05 5667.29 13301 4246.12 5311.55
VRPTW 2833 1303.45 1313.07 2370 1258.23 1339.46
CLSPST 33557 2622.69 2647.42 32043 2713.99 3282.01

Table 1: Results of the standard CG using optimal solutions obtained by the simplex method
and the interior point method.

Many different strategies have been proposed in the literature with the purpose of stabilizing
CG using non-optimal solutions [24, 6, 16, 10, 9, 22, 2, 1, 12]. In most of them, artificial elements
(such as bounds, variables and penalties) are added to the RMP, so that the dual solutions stay
close to a previously computed dual solution. Hence, these approaches require changing the
formulation of the RMP and, in some of them, the changes may increase the difficulty of solving
the problem. In addition, the stability of the dual solutions depends strongly on the choice of
several parameters for which the best setting typically vary from problem to problem. On the
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other hand, approaches relying on the interior point method [10, 12] have two main features: (i)
they do not require the RMP to be modified; (ii) they rely on central prices, i.e., dual solutions
which are well-centered in the dual feasible set. As a result, they naturally reduce the oscillation
of dual solutions in consecutive iterations of the CG algorithm. To illustrate this behavior,
Fig. 1 presents the results of solving the VRPTW instance C107 [23] by using two CG variants:
one is the standard CG (optimal dual solutions obtained with the simplex method), and the
other is the primal-dual column generation [12] (non-optimal dual solutions obtained with the
primal-dual interior point method). In the figure, we plot the distances ‖ui−ui+1‖2 between two
consecutive dual solutions ui and ui+1, for each iteration i of the variants (the solution vectors
were normalized). As the plot suggests, non-optimal dual solutions provided by the interior
point method oscillate less than extreme optimal dual solutions.
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Figure 1: Oscillation of consecutive dual solutions in the standard CG and in a stabilized CG.

The primal-dual column generation method (PDCGM) takes advantage of the centrality of
the dual solutions provided by the primal-dual interior point method [12]. Instead of solving each
RMP to optimality, the PDCGM use suboptimal dual solutions which are also well-centered in
the feasible set, as the iterates of the primal-dual interior point method stay close to the central
path of the feasible set [11]. Given a primal-dual feasible solution (λ̃, ũ) of the RMP, we call
it suboptimal if it satisfies 0 < (cT λ̃ − bT ũ) ≤ ε(1 + |cT λ̃|), for a given parameter ε > 0, which
measures the distance to optimality. The parameter ε is dynamically adjusted according to the
relative gap. At each iteration, it is given by ε = min{εmax, gap/D}, where εmax > 0 is a
fixed upper bound (e.g., εmax = 1.0) and D > 1.0 is the degree of optimality which controls the
reduction of ε. The relative gap is computed as

gap =
cT λ̃− (κzSP (ũ) + bT ũ)

1 + |cT λ̃|
,

where κ > 0 is an upper bound for
∑

j∈N λ∗j and λ∗ is an optimal solution of the master
problem (this value is usually known for a given problem). Therefore, in the first iterations of
the PDCGM, the suboptimal solutions of the RMPs may have a large distance to optimality,
as the relative gap is typically large at this stage. This is reasonable as the RMP is still a
rough approximation of the MP in the early iterations. However, as the relative gap starts to
reduce, the RMP becomes more accurate and thus it makes sense to get suboptimal solutions
which are closer to optimality. At the last iteration, the relative gap is already very small, so
the suboptimal solution will be sufficiently close to optimality. As proved in [12], the PDCGM
converges to an optimal solution of the MP, even though suboptimal solutions are used in the
intermediate iterations.

To illustrate the impact of using well-centered and suboptimal solutions we have run com-
putational experiments using the PDCGM for solving the same classes of problems presented
in Table 1. Table 2 reports the results obtained with the PDCGM using suboptimal dual solu-
tions (default setting) and optimal dual solutions (i.e., at each iteration, the RMP is solved to
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optimality by the interior point method). We observe that the total number of iterations was
smaller for the PDCGM with optimal solutions, regarding CSP and VRPTW. However, since
going for optimality at each iteration required additional CPU time, the PDCGM with subop-
timal solutions resulted in the best total CPU time for the three classes of problems. Notice
that using optimal solutions adversely affects the pricing subproblems as well. Therefore, the
results indicate that relying on suboptimal solutions is an advantageous feature of PDCGM. In
addition, the total number of iterations and total CPU times were smaller than those obtained
with the standard CG, as we can observe in Table 1. This comparison demonstrates the bene-
fits of using well-centered solutions, as the results in Table 1 rely on extreme optimal solutions
obtained with the simplex method.

Subptimal dual solutions Optimal dual solutions
Iter Pricing (s) Total (s) Iter Pricing (s) Total (s)

CSP 16499 2948.56 3945.48 12911 3436.38 4967.76
VRPTW 914 470.38 545.50 684 723.84 910.45
CLSPST 18007 1132.36 1448.73 18036 1130.26 1798.78

Table 2: Results of using optimal and suboptimal dual solutions in the primal-dual column
generation method (PDCGM).

3 Branch-and-Price with the Interior Point Method

The branch-and-price (BP) consists in using the CG technique within the branch-and-bound
method in order to solve integer programming formulations with a huge number of variables
[15, 4]. We can use the interior point algorithm to improve the performance of the BP method
as well, following similar ideas as those in the previous section. However, the BP includes not
only column generation, but also branching strategies, heuristics and, possibly, the generation
of valid inequalities (branch-price-and-cut). Hence, a natural question would be: Can we take
benefit of using the well-centered suboptimal solutions of the interior point method within these
other operations as well? Although only a few papers in the literature have addressed such
combination [19, 7, 21], the answer to this question is “yes”.

Branching is typically based on optimal solutions. Hence, at each node of the BP, we apply
the CG method to find the optimal solution of the master problem (MP) and, in case this
solution is fractional, we use a branching strategy to decide how to branch at the current node.
However, a branching strategy is actually a way of guessing what the best branching decision at
the moment is. None of them guarantees a decision which leads to the best overall performance
for solving an arbitrary problem. Hence, even if we branch using the optimal solution of the
master problem, we cannot guarantee such branching decision is the best. As a result, going for
optimality may be a waste of time, if we could anticipate which variables will be fractional at
the optimal solution. This is the idea behind the early branching strategy. Instead of solving
the MP to optimality, we terminate the CG algorithm prematurely, by setting a loose optimality
tolerance (e.g., δ = 10−3). The obtained solution may not be an optimal one, but it should be a
good approximation of it. It is typically easier to satisfy such requirement if we use well-centered
solutions instead of extreme optimal solutions. Indeed, this is supported by the computational
experiments presented in [21] for a branch-price-and-cut method which uses the primal-dual
interior point method. Well-centered and suboptimal solutions are used to generate columns
and valid inequalities and, in particular, to perform early branching. Table 3 summarizes the
importance of early branching on this interior point branch-price-and-cut method, using the
results of 29 VRPTW instances with 100 customers each (from 100-series of Solomon [23]).
Four different early branching strategies have been tested, each one using a different value for
the optimality tolerance δ. For each strategy, Table 3 gives the total number of nodes and valid
inequalities (cuts) and the total CPU time, in seconds, to solve the 29 instances. As the results
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indicate, early branching with δ = 10−3 was an effective technique for reducing all the considered
measures, in particular the total CPU time.

Tolerance (δ) Nodes Cuts CPU time (s)

10−3 269 3331 8120.90
10−4 277 3165 8846.00
10−5 317 3581 10907.46
10−6 303 3408 15399.37

Table 3: Total number of nodes and valid inequalities (cuts) and total CPU time for solving
29 instances of the VRPTW using an interior point branch-price-and-cut method with different
values of δ (the optimality tolerance used for early branching).

A similar idea can be used to improve the performance of separation procedures that generate
valid inequalities. Namely, instead of solving the master problem to optimality and then generate
cuts, we call the separation procedures in the course of the CG algorithm. More specifically,
we merge the column and cut generation algorithms into one, so that at each iteration of the
resulting algorithm we may call one of the two types of subproblem: (i) a pricing subproblem
to generate new columns; or (ii) a separation subproblem to generate new valid inequalities.
This way, the well-centered and suboptimal solutions provided by the primal-dual interior point
method may be used to generate valid inequalities as well.

Table 4 collects the computational results of solving six challenging instances of the VRPTW
using two different variants of the branch-price-and-cut method, as reported in [3, 21]. The first
is the standard variant in which the simplex method is used to obtain optimal solutions which are
used in the generation of columns and valid inequalities as well as in the branching operations.
The second variant uses the primal-dual interior point method as described above. The results
indicate that the interior point variant is consistently more efficient than the other approach.

Standard (simplex) BPC Interior point BPC
Nodes Cuts Time (s) Nodes Cuts Time (s)

R108 1 296 891 1 153 289
R110 5 219 426 3 111 50
R112 19 574 16073 15 365 1768
RC207 5 210 91405 3 114 15847
R206 1 171 60608 1 57 2033
R210 5 266 400904 5 147 5234

Table 4: Computational results of solving six instances of the VRPTW with a standard branch-
price-and-cut method and an interior point branch-price-and-cut method.

4 Concluding Remarks

In this paper, we described ways to improve the performance of the column generation technique
and the branch-and-price method by using advantageous features offered by the primal-dual
interior point algorithm. We presented numerical evidence to support that well-centered and
suboptimal solutions may benefit the generation of columns and valid inequalities as well as
improve branching. This way, we have summarized the main developments proposed in the
thesis Theoretical and computational issues for improving the performance of linear optimization
methods [20] which has been awarded with the Doctoral Prize Odelar Leite Linhares in 2014.
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