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Abstract: The employment of topological derivative concept is considered to propose a new opti-
mization algorithm for the inverse conductivity problem. Since this inverse problem is nonlinear
and ill-posed it is necessary to incorporate a prior knowledge about the unknown conductivity. In
particular, we apply the Bayes theorem to add the assumption that we have just one small ball-
shaped inclusion, which must be at a certain distance from the boundary of the domain. As the
main emphasis of this paper is to investigate numerically the proposed approach, we shall present
some numerical results to show that accurate results, even for noisy data, can be obtained with
small computational cost.
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1 Introduction

The inverse conductivity problem consists in determining the conductivity distribution of a body
from non-intrusive boundary measurements (see [5], Ch.4). This problem sets out a mathematical
foundation for the process of electrical impedance tomography (EIT) which is an imaging tool
with important applications in fields such as medical diagnosis, nondestructive evaluation of
materials, geophysics, land mine detection and other fields; see [1, 2, 3], for example.

An usual way to propose reconstruction algorithms is to recast the inverse geometric problem
in the form of a topological optimization problem, taking into account an appropriate shape func-
tional. In particular, the topological derivative, which measures the sensitivity of a given shape
functional with respect to an infinitesimal singular domain perturbation, has been recognized
as a very useful tool for this analysis [10]. However, in [11] it was shown that the topological
derivative in the inverse conductivity problem reaches critical values close to the boundary of the
domain. Thus, the classical topological derivative does not provide sufficient information about
the inhomogeneity and it is necessary to improve it. An alternative may be to add some prior
knowledge on the solution using a Bayesian approach. This framework, denominated Bayesian
inversion, is justified by many advantages over deterministic methods, for instance: the variables
included in the problem are recognized as random variables which allow an adequate treatment
of uncertainties and, the inverse problem is restated as a well-posed extension in a larger space
of probability distributions [7, 13].

In this paper, we apply the topological derivative in a Bayesian inversion context and we
explore two statistical estimates for the location: the maximum a posteriori estimator and the
posterior mean estimator. The first one is analogous to take the classical topological derivative
weighted by a function and it leads to a bad estimate. On the other hand, the posterior mean
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estimator gives very accurate estimates, even taking into account noisy data. These results,
pointed out in the numerical experiments, give the justification for this reason.

2 The Inverse Conductivity Problem

We consider a bounded domain Ω ⊂ R2, with a connected Lipschitz boundary ∂Ω. In addition,
we assume that Ω contains one small circular inclusion Br∗(x∗) of radius r∗ > 0, centered at x∗
and separated from the boundary ∂Ω. More specifically, we have Br∗(x∗) = x∗+ r∗B1(0) and we
assume that there exists a constant ζ such that dist(∂Ω, Br∗(x∗)) > ζ > 0, where B1(0) is the
unit ball centered at the origin. Further, we assume that the background is homogeneous with
unit conductivity and the inhomogeneity Br∗(x∗) has a contrast coefficient 0 < γ∗ 6= 1 < +∞.
Defining Ω∗(x∗) := Ω\Br∗(x∗), the conductivity is characterized by the piecewise constant func-
tion: γ(x) = χΩ∗(x∗)(x) + γ∗χBr∗(x∗)

(x), x ∈ Ω, where χD denotes the characteristic function.
The main aim of this work is to develop an algorithm to detect the ball-shaped inclusion Br∗(x∗)
and the contrast coefficient γ∗.

If we relate to steady-state heat conduction, in order to determine the inclusion, we consider a
given non-constant temperature distribution u ∈ H1/2(∂Ω) and measure the boundary heat flux
0 6≡ q ∈ H−1/2(∂Ω) on the whole boundary ∂Ω. The inverse problem considered is to determine
the defect Br∗(x∗) and the thermal conductivity γ∗ from the knowledge of a single pair of Cauchy
data (q, u). Therefore, we wish to determine u∗, Br∗(x∗) and γ∗ satisfying the following inverse
problem: 

∇ · (γ∇u∗) = 0 in Ω
− (γ∇u∗) · n = q on ∂Ω

u∗ = u on ∂Ω ,
[[u∗]] = 0 on ∂Br∗ (x∗)

[[(γ∇u∗)]] · n = 0 on ∂Br∗ (x∗)

(1)

where the operator [[·]] denotes the jump on the boundary of inclusion ∂Br∗ (x∗) and n is the

outward unit normal vector. We also assume that the compatibility condition

∫
∂Ω
q = 0, is

satisfied. The solution to the inverse conductivity problem (1) is unique [6].

2.1 The Kohn-Vogelius Functional

Let us consider the background Ω perturbed by a small ball-shaped inclusion Bε(x̂) = x̂+εB1(0),
with conductivity 0 < γ̂ 6= 1 < +∞, size ε > 0 and centered at an arbitrary point x̂ ∈Ω,
such that dist(∂Ω, Bε(x̂)) > ζ > 0. Define Ωε(x̂) := Ω\Bε(x̂). In this case, the conductivity
is characterized by the piecewise constant function γε (x) = χΩε(x̂) (x) + γ̂χBε(x̂) (x) , x ∈Ω.
The Kohn-Vogelius (KV) functional Jε: Ω→ R+, [8], is defined by

Jε(x̂) =
1

2

∫
Ω
γε
∣∣∇(uDε − uNε )

∣∣2 , x̂ ∈Ω, (2)

where uDε and uNε are, respectively, the solution of the problems associated to the Dirichlet u
and to the Neumann q boundary data, given by:


Find uDε such that
∇ · (γε∇uDε ) = 0 in Ω

uDε = u on ∂Ω ,
[[uDε ]] = 0 on ∂Bε(x̂)

[[(γε∇uDε )]] · n = 0 on ∂Bε(x̂)



Find uNε such that
∇ · (γε∇uNε ) = 0 in Ω
−(γε∇uNε ) · n = q on ∂Ω

[[uNε ]] = 0 on ∂Bε(x̂) ,
[[(γε∇uNε )]] · n = 0 on ∂Bε(x̂)∫

∂Ω
uNε =

∫
∂Ω
uDε

(3)
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where the last normalization condition is added in order to obtain a unique solution to the
Neumann problem. Summarising, in order to retrieve the inclusion Br∗ (x∗) and the coefficient
γ∗, we minimize the KV functional (2) by considering the ‘nucleation’ of a circular inclusion
Bε (x̂) of conductivity γ̂ centered at an arbitrary point x̂ ∈Ω. A method for taking this into
account is the topological derivative concept which is described in the next section.

3 Topological Derivative

The topological derivative introduced in [12] is defined as the first-order correction of the asymp-
totic expansion of a shape functional depending on the domain, with respect to an infinitesimal
singular perturbation. This concept has been successfully applied to a large variety of problems,
like topological optimization, inverse problems and image processing, an account of which may
be found in the recent monograph by Novotny and Soko lowski [10].

Let us consider Ω and Bε(x̂) as previously defined, a given shape functional ψ(Ω) defined
on the background Ω and the corresponding functional ψε(x̂) defined on the perturbed do-
main Ωε(x̂). If, for ε small enough, the topological asymptotic expansion ψε(x̂) = ψ(Ω) +
f(ε)=(x̂) + o(f(ε)), exists, with f(ε) > 0, f(ε) → 0 and o(f(ε))/f(ε) → 0 as ε → 0, then
=(x̂) is called the topological derivative of ψ in x̂. One of the most remarkable facts about
the topological derivative is that it only depends on the solution of problems defined on the
unperturbed domain Ω. Then, once the direct problems (4) below have been solved, the topolog-
ical derivative provides an extremely low computational cost initial guess for the minimization
of the functional ψε. In particular, for the KV functional (2), we have: ψε(x̂) := Jε(x̂) =
1

2

∫
Ω
γε|∇(uDε − uNε )|2 and ψ (Ω) := J (Ω) =

1

2

∫
Ω

∣∣∇ (uD − uN)∣∣2, where uD and uN are

solutions of the Dirichlet and the Neumann problem, respectively:


Find uD such that
∆uD = 0 in Ω ,
uD = u on ∂Ω


Find uN such that

∆uN = 0 in Ω
−∇uN · n = q on ∂Ω .∫

∂Ω
uN =

∫
∂Ω
uD

(4)
In particular, for a planar domain Ω ⊂ R2, we have the following result (see [10]).

Lemma 1. For the KV functional and taking into account a circular inclusion, the topological
asymptotic expansion is given by

Jε (x̂) = J (Ω)− πε2 1− γ̂
1 + γ̂

(∣∣∇uD(x̂)
∣∣2 +

∣∣∇uN (x̂)
∣∣2)+ o(ε2). (5)

4 Bayesian Approach to Inverse Problems

The fundamental idea behind Bayesian inference is the Bayes’ formula, which is a simple conse-
quence of Kolmogorov axioms for conditional probabilities, given by pX|Y(x|y) ∝ pY|X(y|x)pX(x).
where X ∈ Rn and Y ∈ Rm denote the unknown random variable and the corresponding data,
respectively; pX|Y(x|y) is the posterior probability density function (PPDF) of X given the data
y; pX(x) is the prior density function and pY|X(y|x) is the likelihood function, which describes
the interrelation between the observation and the unknown. We can observe that the Bayesian
statistical inference method represents a solution to an inverse problem as a probability distri-
bution of unknown quantities conditional on available data. In fact, it is a remarkable difference
between this approach and the deterministic one, which provides only a point estimate. Then,
given the posterior distribution, we can calculate different point estimates and spread or interval
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estimates. In particular, in this work, we compare two of the most popular statistical esti-
mates: the maximum a posteriori estimator xmap = arg maxx pX|Y(x|y), and the posterior mean
estimator xpm = EX|Y(x|y), for the centre of the inclusion, where E denotes the expectation.

In the following, the centre, size and conductivity of the inclusion are modeled as random
variables. From the formula (5), the size and conductivity can be seen as a scale factor to the
topological derivative. Then, let X be the unknown centre of the inclusion. Taking a Cauchy pair
data Y = (q, u) we propose the following heuristic construction of the likelihood function, based

on the topological derivative of the KV functional: pY|X((q, u)|x) =
∣∣∇uD(x̂)

∣∣2+
∣∣∇uN (x̂)

∣∣2 . This
approach gives a new interpretation for the topological derivative: the regions in the interior of the
domain where the topological derivative attains minimum values are the regions where it is most
likely to find the inclusion. For the prior density we consider, based on the Gaussian densities, the

most commonly used for inverse problems, p1X(x) =
1

β1
exp

(
−|x|

2

2β2

)
, where β1, is a normalizing

constant and β2, is a parameter to be calibrated on a standard example. The motivation for
this choice is based on penalizing the topological derivative values near the boundary of the
domain and the previous knowledge that there is just one inclusion buried in the domain. From
equation (5), we can observe that the size and the conductivity are dependent variables in the
topological asymptotic expansion. Then, it is not possible to simultaneously identify both r∗
and γ∗ by the topological derivative approach in a deterministic framework. Nevertheless, the
Bayesian inversion can provide a joint probability distribution for these parameters. Denoting
the estimated centre by xest, we consider the following two cases.

Case 1: In the first case, the size r∗ is known and the problem is to retrieve γ∗ and x∗. Then,
considering X to be the unknown conductivity γ and Y = (r∗,xest), we adopt the following

likelihood function pY|X((r∗,xest) |γ) =
1

β5
exp

(
−|qcalculated−q|

2

2β7

)
.

Case 2: In the second case, γ∗ is known and the problem is to reconstruct the ball Br∗ (x∗) .
Then, considering X to be the unknown size r and Y = (γ∗,xest) , we adopt the following

likelihood function pY|X((γ∗,xest) |r) =
1

β6

(
exp−|qcalculated−q|

2

2β8

)
.

Where are normalizing constants and β7, β8 are parameters to be calibrated on a standard
example. In each case, we assume that the prior distribution is uniform within a prescribed
interval and take a sample in order to obtain estimates for the target. The sample size should be
large enough to be representative, but should not increase the computational cost considerably.
Then it is necessary to find a balance between this cost and the efficiency of the method. We
finally note that the choices of distributions are based on common sense and practice, but they
are not unique.

5 Numerical Examples

In this numerical example we consider the original domain Ω = B1(0) containing the circular
inclusion Br∗(x∗) = (x∗, y∗) + r∗B1(0), satisfying (x∗ + r∗ cos(θ))2 + (y∗ + r∗ sin(θ))2 < 1 for
θ ∈ [0, 2π). The Cauchy data (q, u) is constructed from a benchmark test example [9], where the
inverse problem (1) has an analytical solution; given by

u∗(x, y) =


x, x ∈ Br∗(x∗)

x− (1− γ∗)(x− x∗)
2

[
1− r2

∗
(x− x∗)2 + (y − y∗)2

]
, x ∈ Ωr∗(x∗)

. (6)
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From equation (6), the Dirichlet data u(θ) follows immediately and the corresponding Neumann
flux data can be derived as

q (θ) :=
∂u∗
∂r

(1, θ) = x− x (1− γ∗)
2

[
1− r2

∗

(x− x∗)2 + (y − y∗)2

]
− (x− x∗) (1− γ∗) r2

∗ [x (x− x∗) + y (y − y∗)][
(x− x∗)2 + (y − y∗)2

]2 , θ ∈ [0, 2π), (7)

where x = cos(θ) and y = sin(θ). We consider now some noisy perturbation of the data obtained
by defining δ = 1.01 and modifying r∗ ≈ r∗δ, x∗ ≈ x∗δ, y∗ ≈ y∗δ and γ∗ ≈ γ∗δ. Figure 1(a)
shows the PPDF for Gaussian prior with β2 = 0.3 for this noisy data. It can be noted that
the maximum a posteriori estimator is not a good estimator in this case, as suggested by the
asymmetry of the distribution, even though the inclusion is in a region of high likelihood. Table
1 shows some estimates xpm and xmap for the centre of the inclusion (x∗, y∗) considering known
the size r∗δ and the conductivity γ∗δ perturbed by the noise δ = 1.01. The results presented
in Table 1 justify the present interpretation of topological derivative in the context of Bayesian
inference. In fact, the maximum a posteriori estimator xmap corresponds to taking the topological
derivative weighted by a function chosen appropriately, whilst the posterior mean estimator xpm
is a statistical estimator very suitable for the problem under consideration. Case 1: Considering
that the size of the inclusion is known as r∗δ and the estimate for the centre (x∗, y∗) is given by
xpm shown in Table 1, let us now obtain an estimate for γ∗, taking into account the exact values
γ∗ ∈ {0.5, 5.0, 10, 15, 20}. Table 2 shows the results for γpm when r∗ = 0.10, the probability
distribution of γ is uniform and we consider a 100 - sample. Figure 1(b) shows the probability
distribution function of γ for the case of the first row and fifth column in Table 2. Case 2: Now,
we consider the case when γ∗ is known and the estimate for centre is xpm. Then, taking into
account γ∗ = 10, r∗ ∈ {0.1, 0.15, 0.20} and assuming that r has a uniform probability distribution
between 0.4 and 0.24, Table 3 shows the estimate rpm for r∗. Figure 1(c) shows the probability
distribution function of r for the case of the first row and third column in Table 3.

6 Conclusions

In this study the topological derivative was employed to build a likelihood function for the in-
verse conductivity problem in a Bayesian approach, where a new interpretation of the topological
derivative allowed us to set up a likelihood function. On the other hand, the prior knowledge
that the inhomogeneity is inside the domain was applied to choose the prior distribution of
probabilities. The topological derivative was applied to determine the centre of inclusion. It
was found that the maximum a posteriori estimator is very poor and that this point estimator
corresponds to putting a weight on the topological derivative. On the other hand, the posterior
mean estimator gave a stable and accurate retrieval of the centre of the ball-shaped inclusion.
Finally, the estimation of the centre was used to get an estimation of the conductivity or size,
providing again stable and accurate results even for a very small inclusion. It should be stressed
that retrieving small inclusions is very important in medical applications in which detection a
tumour, whilst is still small in size, is crucial. Furthermore, this approach overcomes the global
minimum obtained in [9]. It is important to emphasize that these results were obtained without
numerical sampling methods, unlike the results found in the literature of statistical inverse prob-
lems, which significantly increase the computational cost. These promising results show that
the application of topological derivative in the Bayesian framework should be investigated even
further as it can provide at least a good initial guess for other iterative methods.
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Figure 1: (a) PPDF for Gaussian prior with β2 = 0.3 (b) probability distribution function of γ
for the case of the first row and fifth column in Table 2 (c) probability distribution function of
r for the case of the first row and third column in Table 3

Exact xpm xmap

x∗ = 0.7 x0 = 0.7152 x0 = 0.8425

y∗ = 0.1 y0 = 0.1047 y0 = 0.1230

r∗ = 0.1

γ∗ = 5.0

x∗ = 0.5 x0 = 0.4921 x0 = 0.7020

y∗ = 0.1 y0 = 0.1004 y0 = 0.1325

r∗ = 0.2

γ∗ = 10

x∗ = 0.3 x0 = 0.2934 x0 = 0.4250

y∗ = 0.1 y0 = 0.0943 y0 = 0.1400

r∗ = 0.2

γ∗ = 10

x∗ = 0.7 x0 = 0.7376 x0 = 0.8015

y∗ = 0.3 y0 = 0.3185 y0 = 0.3460

r∗ = 0.1

γ∗ = 15

x∗ = 0.7 x0 = 0.7208 x0 = 0.8435

y∗ = 0.2 y0 = 0.2039 y0 = 0.2385

r∗ = 0.1

γ∗ = 20

Table 1: Estimates for the centre of the circular inclusion with noisy data.

References

[1] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Mea-
surements, 429 pages. Springer-Verlag, Berlin (2004)

[2] L. Borcea, Electrical Impedance Tomography, Inverse Problems, 18, R99–R136 (2002)

[3] S. Ciulli, M. K. Pidcock and C. Sebu, An Integral Equation Method for the Inverse Con-
ductivity Problem, Physics Letters A, 325, 253–267 (2004)

6

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0449 010449-6 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0449


γ∗ = 0.5 γ∗ = 5.0 γ∗ = 10 γ∗ = 15 γ∗ = 20
(x∗, y∗) xpm γpm γpm γpm γpm γpm

(0.7, 0.1) (0.7152, 0.1047) 0.5229 5.0423 10.0534 15.0724 19.9360

(0.5, 0.1) (0.4921, 0.1004) 0.5107 5.0911 10.1296 15.0630 19.9284

(0.3, 0.1) (0.2934, 0.0943) 0.5143 5.0482 10.1085 15.0817 19.9341

(0.7, 0.3) (0.7376, 0.3185) 0.4973 5.0693 10.0069 15.0742 19.9518

(0.7, 0.2) (0.7208, 0.2039) 0.5120 5.0321 10.0393 15.0624 19.9485

Table 2: Estimates for the conductivity γ∗ with noisy data.

r∗ = 0.10 r∗ = 0.15 r∗ = 0.20
(x∗, y∗) xpm rpm rpm rpm

(0.7, 0.1) (0.7152, 0.1047) 0.0994 0.1502 0.1963

(0.5, 0.1) (0.4921, 0.1004) 0.0974 0.1537 0.2007

(0.3, 0.1) (0.2934, 0.0943) 0.1003 0.1504 0.2037

(0.7, 0.3) (0.7376, 0.3185) 0.1002 0.1494 0.2100

(0.7, 0.2) (0.7208, 0.2039) 0.1008 0.1498 0.2011

Table 3: Estimates for the radius r∗ with noisy data.

[4] M. Hintermüller and A. Laurain, Electrical Impedance Tomography: From Topology to
Shape, Control Cybern., 37(4), 913–933 (2008)

[5] V. Isakov, Inverse Problems for Partial Diferential Equations, 284 pages. Springer, New
York, (1998)

[6] V. Isakov and J. Powell, On Inverse Conductivity Problem with One Measurement, Inverse
Problems, 6, 311–318 (1990)

[7] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, 339 pages.
Springer, New York (2005)

[8] R. Kohn and M. Vogelius, Relaxation of a Varional Method for Impedance Computed To-
mography, Comm. Pure Appl. Math., 40(6), 745–777 (1987)

[9] D. Lesnic, A Numerical Investigation of the Inverse Potential Conductivity Problem in a
Circular Inclusion, Inverse Problems Eng., 9, 1–17 (2001)

[10] A. A. Novotny and J. Soko lowski, Topological Derivatives in Shape Optimization, 412 pages.
Springer, Berlin (2012)

[11] J. Rocha de Faria, A. A. Novotny, R. A. Feijóo and E. Taroco, First- and Second-Order
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