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Abstract: Interference is usually viewed as an obstacle to communication in wireless networks,

so we developed a new methodology to quantize the channel coefficients in order to realize in-

terference alignment onto a lattice. Our channel model is the same as the compute-and-forward

strategy. In this work, we suppose that our interference channel is real-valued and we describe

a way to find a nested lattice partition chain, for any dimension n = 2r−2, where r ≥ 3, in

order to quantize the channel coefficients. For that, we make use of the maximal real subfield

K of L = Q(ξ2r), where r ≥ 3, ξ = ξ2r is the 2r-th root of unity and K = Q(θ), with θ = ξ+ξ−1.

Palavras-chave: Channel Coding, Lattice, Inteference Alignment

Introduction

By [2], we know that the compute-and-forward strategy enables relays to decode linear
equations of the transmitted messages by using the noisy linear combinations provided by the
channel and we have an equivalent channel induced by the modulo-Λ transformation. In this
“virtual”channel model, each relay observes a Z[i]-combination

∑

amltl of the lattice points
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corrupted by effective noise zeq,m, that is,

ym =

L
∑

l=1

amltl + zeq,m. (1)

In this work, we suppose that our interference channel is real-valued, specifically aml ∈ R,
and, in order to realize interference alignment onto a lattice, we need to quantize the channel
coefficients aml. We describe a way to find a nested lattice partition chain, for any dimension
n = 2r−2, where r ≥ 3, in order to quantize the channel coefficients. For that, we make use of
the maximal real subfield K of L = Q(ξ2r), where r ≥ 3, ξ = ξ2r is the 2r-th root of unity and
K = Q(θ), with θ = ξ + ξ−1.

We also have that the coding scheme only requires that each relay knows the channel co-
efficients from each transmitter to itself. Specifically, relay m only needs to know aml. Each
transmitter only needs to know the desired message rate, not the realization of the channel.

For this new methodology, we introduce an error criterion that measures, in a probabilistic
sense, the error between the desired quantity and our estimate of it. Therefore, we focus on
choosing our estimate to minimize the expected or mean value of the square of the error, referred
to as a minimum mean-square-error (MMSE) criterion.

But, in this work, we only discuss about the methodology related to the channel approxima-
tion in order to realize interference alignment onto a lattice.

Quantization of the Channel Gains

As described in the previous section, suppose that our interference channel is real-valued,
specifically aml ∈ R. We suppose that all lattices used by the legitimate user and the interferers
are one of a certain lattice partition chain and extended by periodicity. Now the idea we want
to develop is that the effect of a channel gain on a given user is to shift the lattice used by the
user either to the left, if its channel gain is smaller than 1, or to the right, if it is larger than 1.
It is very important that the channel gain does not remove the lattice from the initial chain of
nested lattices.

In this section, we consider n-dimensional real-valued vectors, where n = 2r−2 and r ≥ 3.
Now we write, for a given user, how its codeword can be transformed so that we can perform
the channel quantization. We make use of the maximal real subfield K of L = Q(ξ2r), where
r ≥ 3, ξ = ξ2r is the 2r-th root of unity and K = Q(θ), with θ = ξ + ξ−1.

So we consider the following Galois extensions, where r ≥ 3:

L
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(2)

Let ξ = ξ2r be a 2r-th root of unity, where r ≥ 3. Let L = Q(ξ) = K(i) and K =
Q(θ) be the maximal real subfield of L, where θ = ξ + ξ−1. By the theorem 10, in [1], we
have that [L : Q] = 2r−1, [K : Q] = 2r−2 = n, OK = Z[θ] is the ring of integers of K and
{1, ξ + ξ−1, . . . , ξn−1 + ξ−(n−1)} is an integral basis of OK .

As [Q(ξ2r) : Q] = φ(2r) = 2r−1, where φ is the Euler function, and [Q(i) : Q] = 2, then we
have [Q(ξ2r) : Q(i)] = 2r−2 = n.

Let Gal(K/Q) = {σ1, σ2, . . . , σn} be the Galois group of K over Q ([1], pg. 6).
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Let’s find an ideal of norm equal to 2, that is, we find an element of OK with absolute
algebraic norm equal to 2. In fact,

2 = NL/Q(1 + ξ) = NK/Q(NL/K(1 + ξ)) =

= NK/Q(1 + ξ−1 + ξ + 1) = NK/Q(2 + 2cos(π/2(r−1))).

Observe that ξ + ξ−1 = θ = 2cos(π/2(r−1)), then NK/Q(2 + θ) = 2. So

NK/Q(p) = 2, where p = (2 + θ) ∈ OK .

Therefore ℑ = 〈p〉 = 〈2 + θ〉 = pOK is a principal ideal of norm 2. By [1], pg. 3, we have
that

RT =









√

σ1(α)σ1(α1) · · ·
√

σ1(α)σ1(αn)
√

σ2(α)σ2(α1) · · ·
√

σ2(α)σ2(αn)
...

. . .
...

√

σn(α)σn(α1) · · ·
√

σn(α)σn(αn)









(3)

is a generator matrix of the lattice Λ = {x = Mλ | λ ∈ Zn}, where α ∈ K is totally positive,
that is, σi(α) > 0, for all i = 1, 2, . . . , n, and {α1, α2, . . . , αn} is a basis of A over Z, where
A ⊆ OK is an ideal.

In this case, we have that the Gram matrix (RT )TRT = RRT coincides with the trace form
(Tr(ααiαj))

n
i,j=1, where T denotes the transposition.

We know that {1, ξ + ξ−1, . . . , ξn−1 + ξ−(n−1)} = {e0, e1, . . . , e(n−1)} is an integral basis of

OK . Observe in [1], pg. 6, that T is a basis transformation matrix from {ei}n−1
i=0 to {fi}n−1

i=0 ,

where fi = −
∑i

j=0 ej , for all i = 0, 1, 2, . . . , n− 1, and T = T T . So {f0, f1, . . . , fn−1} is another
basis (Z-basis) of OK .

Finally, the generator matrix of the rotated Zn-lattice is given by ([1], pg. 7)

R =
1√
2r−1

TMA. (4)

But, in this work, the columns of a matrix generate the Zn-lattice, then M0 = RT generates
the rotated Zn-lattice Λ0. So Λ0 = {x = M0λ | λ ∈ Zn} ≃ Zn and M0 = 1√

2r−1
AMTT =

1√
2r−1

AM ′ (M ′ = MTT ), where

M =





σ1(e0) · · · σn(e0)
...

. . .
...

σ1(en−1) · · · σn(en−1)



, (5)

A = diag(
√

σk(α))
n
k=1, where α = 2− θ, and (6)

T =









−1 −1 −1 · · · −1
−1 −1 −1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 0









. (7)

But M ′ = MTT can be directly calculated if we use the new basis {fi}n−1
i=0 , that is,

M ′ =









σ1(f0) · · · σ1(fn−1)
σ2(f0) · · · σ2(fn−1)

...
. . .

...
σn(f0) · · · σn(fn−1)









. (8)
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Observe, by [1], that RRT = I, where I is the identity matrix. Then

MT
0 M0 = (RT )TRT = RRT = I.

At the receiver, we suppose that we apply M0 to the received vector of (1) to get

ȳm = M0ym =

L
∑

l=1

amlM0tl +M0zeq,m. (9)

As zeq,m is i.i.d. circularly symmetric complex Gaussian noise and M0 is orthogonal, then
the noise in (9) is also i.i.d. circularly symmetric complex Gaussian. Now let’s take a look at
the vectors of the form amlM0tl. For sake of simplicity of notations, we denote each one of these
vectors by

x̄ = h ·M0 · x, (10)

where x = tl is the lattice point transmitted by the considered user and h = aml is the channel
coefficient. We can rewrite it now as









h 0 · · · 0
0 h · · · 0
...

...
. . .

...
0 0 · · · h









· U · x = H · U · x. (11)

We can observe that ℑk, k ∈ Z, is an ideal of OK generated by pk, with p = 2 + θ. So
ℑk = pkOK .

Now, if {α1, α2, . . . , αn} is a Z-basis of OK , then we can see that

{pkα1, p
kα2, . . . , p

kαn}

is a Z-basis of ℑk = 〈pk〉 = pkOK , since the set of invertible fractional ideals form an abelian
group related to the product of ideals.

We know, by [1], that {f0, f1, . . . , fn−1} is a Z-basis of OK used to find the rotated Zn-lattice
Λ0. So, by previously, it follows that {pkf0, pkf1, . . . , pkfn−1} is a Z-basis of ℑk = pkOK . Then
the generator matrix Mk of the lattice Λk = {x = (Mk)λ | λ ∈ Zn} is given by

Mk =









√

σ1(α)σ1(p
kf0) · · ·

√

σ1(α)σ1(p
kfn−1)

√

σ2(α)σ2(p
kf0) · · ·

√

σ2(α)σ2(p
kfn−1)

...
. . .

...
√

σn(α)σn(p
kf0) · · ·

√

σn(α)σn(p
kfn−1)









=

= A ·









σ1(p
k) 0 · · · 0

0 σ2(p
k) · · · 0

...
...

. . .
...

0 0 · · · σn(p
k)









·M ′ = AA′MTT, (12)

where A′ = diag(σi(p
k))ni=1.

As A and A′ are diagonal matrices, we have AA′ = A′A. ThenMk = A′(AMTT ) = A′(AM ′).
So we can conclude that the matrix H can be approximated by

A′ =









σ1(p
k) 0 · · · 0

0 σ2(p
k) · · · 0

...
...

. . .
...

0 0 · · · σn(p
k)









. (13)
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In the appendix below, we have a program that gives us, for each r ≥ 3 (each n = 2r−2,
where r ≥ 3), a nested lattice partition chain, which is extended by periodicity so that it is a
doubly infinite chain.

This program, made by using KASH program, presents the generator and Gram matrices
of the lattices in each nested lattice partition chain. We can observe that each nested lattice
partition chain is extended by periodicity and such a periodicity is equal to n = 2r−2.

In this program, for each r and w, we find the generator and gram matrices of a lattice, which
is isomorphic to the canonical embedding of the ideal ℑw, where we know that ℑw = pwOK is
an ideal of OK generated by pw. We can also observe that the position of this lattice compared
to the Zn-lattice in the nested lattice partition chain related to r is exactly w.

So, in this work, we construct a nested lattice partition chain related to any r ≥ 3 (any
n = 2r−2, where r ≥ 3). Then, for the real case, we have the generalization to obtain a nested
lattice partition chain in order to quantize the channel coefficients.

Appendix: Program for Calculating the Generator and Gram Matrices of the Lat-

tices Associated to the Real Nested Lattice Partition Chains

The program is given as it follows:

r:=power;
w:=power;
m:=2ˆr;
n:=2ˆ(r-2);
zeta:=Exp(2*PI*I/m);
theta:=zeta+zetaˆ(-1);
alpha:=2-theta;
p:=2+theta;
uw:=pˆw;

sigmaw:=[];
sigma:=[];
L:=[1..n*n];
l:=List(L,x-¿0);
M:=Matrix(R,n,n,l);
GR:=Matrix(Z,n,n,l);
MI:=Matrix(Z,n,n,l);
T:=Matrix(Z,n,n,l);
Aw:=Matrix(R,n,n,l);
N:=Matrix(Z,n,n,l);
A:=Matrix(R,n,n,l);
NL:=Matrix(Z,n,n,l);
S:=Matrix(Z,n,n,l);

♯ compute sqrt(alpha k);

for k in [1..n] do

sigma[k]:=Sqrt(2-2*Cos((2*PI*(2*k-1))/m));

od;

♯ compute uw j;

for j in [1..n] do
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sigmaw[j]:=(2+2∗Cos((2∗PI∗(2∗j-1))/m))ˆw;

od;

♯ compute A;

diag:=MatrixAlgebra(R,n);
A:=DiagonalMatrix(diag,sigma);

♯ compute Aw;

diag:=MatrixAlgebra(R,n);
Aw:=DiagonalMatrix(diag,sigmaw);

♯ compute M;

for j in [1..n] do

SetEntry(M,1,j,1);

od;

for i in [1..(n-1)] do

for j in [1..n] do

SetEntry(M,(i+1),j,2*Cos(((2*PI)/m)*i*(2*j-1)));

od;

od;

MT:=Transpose(M);

♯ compute T;

for j in [1..n] do

for i in [1..(n-(j-1))] do

SetEntry(T,i,j,-1);

od;

od;

Mw:=M∗A∗Aw;
MwT:=Transpose(Mw);

P:=M*A;

Pinv:=Pˆ(-1);

Mu:=P*Aw*Pinv;

MuT:=Transpose(Mu);

♯ compute MI;

for i in [1..n] do

for j in [1..n] do

SetEntry(MI,i,j,Round(Mu[i][j]));
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od;

od;

MIT:=Transpose(MI);

gu:=MI*MIT;

gul:=LLLGram(gu);

♯ compute N=guR;

for i in [1..n] do

for j in [1..n] do

SetEntry(N,i,j,Round(gu[i][j]));

od;

od;

NL:=LLLGram(N);

♯ compute S;

for i in [1..n] do

for j in [1..n] do

SetEntry(S,i,j,Round(gul[i][j]));

od;

od;

We can observe that the matrix NL is equal to the matrix S.

Conclusion

Although interference is usually viewed as an obstacle to communication in wireless networks,
the authors in [2] propose a new strategy, called compute-and-forward, which exploits interference
to obtain significantly higher rates between users in a network.

The idea is that compute-and-forward enables relays to decode linear equations of the trans-
mitted messages by using the noisy linear combinations provided by the channel, that is, they
do not ignore the interference as a noise. After the relays decode these linear equations, they
simply send them to the destinations, which given enough equations, can recover their desired
messages. The strategy is based on nested lattice codes, which are codes with a linear structure.
Such structure ensures that integer combinations of codewords can be decoded reliably.

Thus, in this work, in order to realize interference alignment onto a lattice for real-valued
channels, we describe a way to find a nested lattice partition chain for any dimension n = 2r−2,
where r ≥ 3.
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