Métodos Temporais e Modelo de Deconvolução de Leray para as Equações de Navier-Stokes em Fluidos Incompressíveis via Elementos Finitos

Marcelo M. de Souza, Carolina C. Manica Programa de Pós-Graduação em Matemática Aplicada, UFRGS 91509-900, Porto Alegre, RS E-mail: marcelo.maraschin@ufrgs.br

Resumo: O estudo das equações de Navier-Stokes desperta interesse dos estudiosos da área da análise numérica, visto que a partir destas pode-se determinar os campos de velocidade e pressão de um escoamento. Com estas equações também pode-se aproximar coeficientes aerodinâmicos, fato de grande interesse nas indústria automobilística e aeronáutica. Propõe-se estudar a aproximação das equações de Navier Stokes via o método de elementos finitos. Estudam-se duas propostas de métodos de discretização temporal para as equações dadas. Introduz-se um modelo de regularização e através do cálculo dos coeficientes de arrasto e sustentação comprova-se a sua efetividade.

Palavras-chave: Métodos Temporais, Modelo de Deconvolução de Leray, Elementos Finitos

1. Introdução

As equações de Navier-Stokes são equações diferenciais parciais que descrevem o escoamento de fluidos. A partir destas pode-se determinar os campos de velocidade e de pressão num escoamento. Logo, descrevem a física de um grande número de fenômenos de interesses econômicos e acadêmicos.

Estas equações são utilizadas para modelar o clima, correntes oceânicas, nos projetos de aeronaves e carros, nos estudos do fluxo sangüíneo, na análise dos efeitos da poluição hídrica em rios, mares e da dispersão da poluição atmosférica, etc.

Esse trabalho trata de fluido incompressível e viscosidade constante. Assim, as equações de Navier-Stokes bidimensionais incompressíveis em regime transiente, com condição de contorno de Dirichlet, são dadas por

 $\nabla \cdot$

$$\mathbf{u}_t - \frac{1}{Re} \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{f} \quad \text{em } (0, T] \times \Omega, \tag{1}$$

$$\mathbf{u} = 0 \quad \mathrm{em} \left[0, T\right] \times \Omega, \tag{2}$$

$$\mathbf{u} = 0 \quad \mathrm{em} \ [0, T] \times \partial \Omega, \tag{3}$$

$$\mathbf{u}(0,\cdot) = \mathbf{u}_0 \operatorname{em} \Omega, \tag{4}$$

onde $\mathbf{u} = (u^1(x, y; t), u^2(x, y; t))$ é a velocidade para duas dimensões, p(x, y; t) é a pressão, $\mathbf{f} = (f^1(x, y; t), f^2(x, y; t))$ é a forçante, Re é o número de Reynolds, $\Omega \subset \mathbb{R}^2$ é o domínio, $\partial \Omega$ é a fronteira, \mathbf{u}_0 é a velocidade inicial e [0, T] é o intervalo de tempo.

Para obter uma formulação variacional para estas equações define-se o espaço da velocidade $X = H_0^1(\Omega)^2$ e da pressão $Q = L_0^2(\Omega)$, onde $H_0^1(\Omega)^2 = \{\mathbf{v} \in L^2(\Omega)^2 \in \nabla \mathbf{v} \in L^2(\Omega)^{2 \times 2} : \mathbf{v} = 0 \text{ em } \partial \Omega\}$ é o espaço de Hilbert $(H^1(\Omega)^2)$ com condição de contorno zero e $L_0^2 = \{q \in L^2(\Omega) : \int_{\Omega} q \, dx dy = 0\}$ é o espaço de Hilbert $H^0(\Omega) = L^2(\Omega)$ com média zero.

Para discretizar estas equações no espaço escolheu-se o método de elementos finitos, que tem se mostrado um ótimo método numérico na área de mecânica de fluidos. Uma introdução deste

método aplicado a escoamentos viscosos de fluidos incompressíveis pode ser verificada em Layton [9].

Escolhe-se espaços de dimensão finita $X^h \subset X$ para a velocidade e $Q^h \subset Q$ para a pressão. Tome X^h e Q^h dados pelo elemento Taylor-Hood, ou seja, utiliza-se polinômios quadráticos na velocidade e lineares na pressão, veja mais em Layton [9]. A escolha por estes elementos se dá pelo fato de satisfazer a condição inf-sup discreta que garante admissibilidade dos dois espaços escolhidos para velocidade e pressão.

Assim, a solução aproximada por elementos finitos de (1)-(2) é: encontre $\mathbf{u}^h : [0,T] \to X^h$ e $p^h : (0,T] \to Q^h$ satisfazendo

$$(\mathbf{u}_{t}^{h}, \mathbf{v}^{h}) + \frac{1}{Re} (\nabla \mathbf{u}^{h}, \nabla \mathbf{v}^{h}) + b^{*} (\mathbf{u}^{h}, \mathbf{u}^{h}, \mathbf{v}^{h}) - (p^{h}, \nabla \cdot \mathbf{v}^{h}) = (\mathbf{f}, \mathbf{v}^{h}) \quad \forall \ \mathbf{v}^{h} \in X^{h},$$
(5)

$$(\nabla \cdot \mathbf{u}^h, q^h) = 0 \qquad \forall q^h \in Q^h, \tag{6}$$

onde $\mathbf{u}^h = (u^{h,1}, u^{h,2})$ e (.,.) é o produto interno no espaço L^2 .

As equações de Navier-Stokes consideradas neste trabalho estão em regime transiente, por isso o método de discretização temporal é muito importante no processo de obtenção da solução aproximada. Assim, um objetivo é comparar os métodos de discretização temporal.

2. Métodos de Discretização Temporal

Escolheu-se dois métodos de segunda ordem e implícitos. Segundo Schäfer e Turek [13] métodos explícitos podem ser ineficientes, pois, para satisfazer a condição de Courant-Friedrichs-Lewy necessitam de incremento temporal muito pequeno.

O primeiro é o método de Crank-Nicolson (CN), estudado para as equações de Navier-Stokes em Heywood e Rannacher [6], que além de ser de segunda ordem é A-estável. Crank-Nicolson é uma combinação dos métodos de Euler implícito e Euler explícito.

O outro método também de segunda ordem, desenvolvido em Bristeau et al. [2], é conhecido como método θ de passo fracionado (FS). Este método é fortemente A-estável e resolve o problema proposto em três etapas para cada passo de tempo.

Introduz-se θ_i , para i = 1, 2, 3, 4, e Δt_k o passo de tempo para o termo da pressão. Estes parâmetros são escolhidos de acordo com o método utilizado, segue na Tabela 1.

Método	θ_1	θ_2	θ_3	θ_4	t_k	t_{k+1}	Δt_k
CN	0.5	0.5	0.5	0.5	t_n	t_{n+1}	Δt
FS	$\tau \theta$	$\eta \theta$	$\eta \theta$	au heta	t_n	$t_n + \theta \Delta t$	$\theta \Delta t$
	$\eta \theta^*$	$ au heta^*$	$ au heta^*$	$\eta heta^*$	$t_n + \theta \Delta t$	$t_{n+1} - \theta \Delta t$	$\theta^* \Delta t$
	au heta	$\eta heta$	$\eta heta$	au heta	$t_{n+1} - \theta \Delta t$	t_{n+1}	$\theta \Delta t$

Tabela 1: Tabela de parâmetros para métodos temporais

Os coeficientes do método FS apresentados na Tabela 1 são escolhidos a fim de obter um esquema de segunda ordem e fortemente A-estável. Bristeau, Glowinski e Periaux [2] provam que deve-se escolher $\theta = 1 - \frac{\sqrt{2}}{2}$, $\tau = 2 - \sqrt{2}$ e $\theta^* = \eta = \sqrt{2} - 1$.

que deve-se escolher $\theta = 1 - \frac{\sqrt{2}}{2}$, $\tau = 2 - \sqrt{2}$ e $\theta^* = \eta = \sqrt{2} - 1$. Para obter a solução aproximada das equações de Navier-Stokes para fluidos incompressíveis discretizadas no espaço e no tempo, dado $(\mathbf{u}_k^h, p_k^h) \in (X^h, Q^h)$ encontre $(\mathbf{u}_{k+1}^h, p_{k+1}^h) \in (X^h, Q^h)$ satisfazendo

$$(\mathbf{u}_{k+1}^{h}, \mathbf{v}^{h}) + \theta_{1} \Delta t [Re^{-1} (\nabla \mathbf{u}_{k+1}^{h}, \nabla \mathbf{v}^{h}) + b^{*} (\mathbf{u}_{k+1}^{h}, \mathbf{u}_{k+1}^{h}, \mathbf{v}^{h})] - \Delta t_{k} (p_{k+1}^{h}, \nabla \cdot \mathbf{v}^{h}) =$$

$$= (\mathbf{u}_{k}^{h}, \mathbf{v}^{h}) - \theta_{2} \Delta t [Re^{-1} (\nabla \mathbf{u}_{k}^{h}, \nabla \mathbf{v}^{h}) + b^{*} (\mathbf{u}_{k}^{h}, \mathbf{u}_{k}^{h}, \mathbf{v}^{h})] +$$

$$+ \theta_{3} \Delta t (\mathbf{f}_{k}, \mathbf{v}^{h}) + \theta_{4} \Delta t (\mathbf{f}_{k+1}, \mathbf{v}^{h}) \quad \forall \mathbf{v}^{h} \in X^{h},$$

$$(7)$$

$$(\nabla \cdot \mathbf{u}_{k+1}^h, q^h) = 0 \qquad \forall q^h \in Q^h.$$
(8)

Uma dificuldade que se encontra nos métodos implícitos é a resolução de um sistema nãolinear em cada passo de tempo. Para isso existem métodos iterativos de linearização local, tais como Picard e Newton, veja em Gunzburger [4].

Um dos grandes problemas na obtenção da solução numérica da equações de Navier-Stokes em regime transiente é o alto custo computacional, devido a linearização do termo convectivo, da malha muito refinada e de passos de tempo pequenos. Por isso, busca-se alternativas que calculem as soluções encontradas com malhas finas em malhas grossas. Esta é uma das propostas do modelo de deconvolução de Leray, discutido em Layton et al. [10].

O modelo de deconvolução baseia-se na regularização introduzida por Leray [11], de um filtro diferencial discreto estudado por Manica e Kaya Merdan [12] e da aproximação de operadores de deconvolução de van Cittert, dado em [1].

3. Modelo de Deconvolução de Leray

Define-se o filtro diferencial discreto, dado em Manica e Kaya Merdan [12].

Definição 1:(Filtro diferencial discreto) Dado $\mathbf{u} \in L^2(\Omega)^2$, para um filtro de raio $\delta > 0$, $\overline{\mathbf{u}}^h = A_h^{-1} \mathbf{u}$ é a única solução em $X^h \subset X$ de

$$\delta^2(\nabla \overline{\mathbf{u}}^h, \nabla \mathbf{v}^h) + (\overline{\mathbf{u}}^h, \mathbf{v}^h) = (\mathbf{u}, \mathbf{v}^h) \quad \forall \mathbf{v}^h \in X^h$$
(9)

Definição 2: Defina a projeção L^2 , $\Pi^h : L^2(\Omega)^2 \to X^h$ e o operador Laplaciano discreto $\Delta_h : X \to X^h$ por

$$(\Delta_h \mathbf{u}, \mathbf{v}^h) = -(\nabla \mathbf{u}, \nabla \mathbf{v}^h), (\Pi^h \mathbf{u} - \mathbf{u}, \mathbf{v}^h) = 0,$$
(10)

(11)

para qualquer $\mathbf{v}^h \in X^h$.

Pode-se escrever que $A_h := (-\delta^2 \Delta_h + \Pi^h)$ e $\overline{\mathbf{u}}^h = (-\delta^2 \Delta_h + \Pi^h)^{-1} \mathbf{u}$. Considere o modelo de deconvolução de Leray:

$$\mathbf{u}_t + D_N(\overline{\mathbf{u}}) \cdot \nabla \mathbf{u} - \nu \Delta \mathbf{u} + \nabla p = \mathbf{f} \quad \text{em } \Omega \times (0, T), \tag{12}$$

 $\nabla \cdot \mathbf{u} = 0 \quad \text{em } \Omega \times (0, T), \tag{13}$

onde D_N é um operador de deconvolução de van Cittert, segue definição.

Definição 3: O operador de deconvolução discreto de van Cittert D_N é definido por

$$D_N \mathbf{u}^h = \sum_{n=0}^N (I - A_h^{-1})^n \mathbf{u}^h.$$
 (14)

Por questões de notação, quando N = 0 tome Leray0, quando N = 1 tome Leray1, ou seja, para N tem-se LerayN.

Segundo Dunca e Epshteyn [3] o operador de deconvolução D_N satisfaz, para u suave,

$$D_N \overline{\mathbf{u}} = \mathbf{u} + O(\delta^{2N+2}) \quad N = 0, 1, 2, 3, \dots$$
 (15)

Uma vantagem do modelo é que aumentando $N \to N + 1$ aumenta a precisão de $O(\delta^{2N+2})$ para $O(\delta^{2N+4})$, mas isso requer a resolução de mais um problema de Poisson $((-\delta^2 \Delta + 1)^{-1}\mathbf{u})$ por Δt .

4. Resultados

Em ambos os exemplos desta seção o sistema linear é resolvido pelo método UMFPACK, que é uma versão sofisticada da fatoração LU. Utilizou-se o software livre FreeFEM++ [5].

4.1 Problema com solução exata conhecida

Escolheu-se um problema de decaimento de vórtices. A solução exata de (1) - (2) é dada por

$$u_{1} = -\cos(n\pi x)\sin(n\pi y)\exp(-2n^{2}\pi^{2}t/\tau)$$

$$u_{2} = \cos(n\pi y)\sin(n\pi x)\exp(-2n^{2}\pi^{2}t/\tau)$$

$$p = -0.25(\cos(2n\pi x) + \cos(2n\pi y))\exp(-4n^{2}\pi^{2}t/\tau)$$

em um domínio $\Omega = (0,1)^2$. Considerou-se o termo de relaxação $\tau = 1$ e a configuração de vórtices n = 4. O lado direito **f**, a condição inicial **u**₀ e as condições de contorno são obtidas a partir de que (u_1, u_2, p) sejam soluções das equações de (1) a (4) para número de Reynolds igual a 1 (Re=1).

Utilizou-se malha regular com h = 1/64. O tempo final deste escoamento é T = 1s e o passo de tempo é dado por $\Delta t = 0, 1 \times 2^{-i}$, para i = 0, ..., 7.

Para o termo não-linear utilizou-se a iteração de Picard em cada passo de tempo com critério de parada $\gamma < 10^{-8}$, pois neste caso se mostrou mais rápido que o método de Newton, mas com resultados semelhantes.

Apesar de utilizar o elemento Taylor-Hood que satisfaz a condição inf-sup discreta, neste exemplo foi utilizado o método da penalidade para otimizar a pressão, veja mais em Gunzburger [4].

Na Figura 1 analisa-se os métodos temporais. Percebe-se que o erro na velocidade e na pressão é menor em praticamente todos os passos de tempo com o método FS do que com CN. Observa-se semelhança dos gráficos entre o presente trabalho e o artigo de John et al. [8].

Figura 1: Cálculo dos erros da velocidade e pressão, respectivamente, para diferentes métodos de discretização temporal por passo de tempo

Outros exemplos com soluções exatas conhecidas podem ser encontrados em Souza [14].

4.2 Simulação de Coeficientes Aerodinâmicos

Trata-se do escoamento em duas dimensões em torno de um cilindro, onde a solução exata é desconhecida. Utilizou-se as equações de (1) a (4) com tais condições de contorno, $\mathbf{u}(t;0,y) = \mathbf{u}(t;2.2,y) = 0.41^{-2} \sin(\pi t/8) (6y(0.41-y), 0) \text{m/s}$ e condição de não-deslizamento nas partes superior, inferior e na superfície do cilindro. Considere $\nu = 10^{-3}m^2/s$, $\mathbf{f}=\mathbf{0}$ e tempo T = 8s.

Para o termo não-linear utilizou-se o método de Newton com critério de parada $\gamma < 10^{-10}$, que mostrou-se mais eficiente que o método de Picard nesse caso.

Esse tipo de problema serve para testar a fidelidade física do algoritmo. Os coeficientes aerodinâmicos são números adimensionais utilizados para o estudo aeronáutico, aerodinâmico e automobilístico. Medem as forças que sofre um corpo qualquer em movimento num fluido. Alguns dos coeficientes mais conhecidos são o coeficiente de sustentação (c_l) e o coeficiente de arrasto (c_d) . Outro parâmetro a ser estudado é a diferença de pressão entre parte da frente e de trás do cilindro dada por $\Delta p = p(8; 0.15, 0.2) - p(8; 0.25, 0.2)$ no tempo T = 8s.

Para as computações foram escolhidos 3 níveis de malha. A malha 2 do presente trabalho tem a mesma quantidade de graus de liberdade da malha 1 do trabalho de John [7] e a malha 3 deste trabalho com a malha 2 de John [7]. Para o passo de tempo escolheu-se $\Delta t = 0, 02/2^i$, onde i = 0, ..., 4.

Em Schäfer e Turek [13], este mesmo exemplo é resolvido, com diversos métodos de solução numérica e malhas bem refinadas. Conclui-se que o intervalo ótimo do coeficiente de arrasto é $2,93 < c_{d,max} < 2,97$, o coeficiente de sustentação é $0,47 < c_{l,max} < 0,49$ e para a diferença da pressão o intervalo é $-0,115 < \Delta p(8s) < -0,105$. A Tabela 2 e a Tabela 3 podem ser comparadas com John [7].

Nível	Δt	$t(c_{d,max})$	$c_{d,max}$	$t(c_{l,max})$	$c_{l,max}$	$\Delta p(8s)$
2	0.02	3.96	2.966817	5.76	0.4252636	-0.10341796
2	0.01	3.94	2.9677771	5.72	0.4395816	-0.10987897
2	0.005	3.94	2.9682405	5.715	0.44286571	-0.11106215
2	0.0025	3.9375	2.9684635	5.7075	0.44233924	-0.11141863
2	0.00125	3.93625	2.968574	5.70875	0.44227988	-0.11156644
3	0.02	3.94	2.94787	5.76	0.454906	-0.105271
3	0.01	3.94	2.94886	5.72	0.468869	-0.110712
3	0.005	3.94	2.94933	5.705	0.470592	-0.11146
3	0.0025	3.9375	2.94956	5.7025	0.470288	-0.111705
3	0.00125	3.93625	2.94966	5.7025	0.470129	-0.111824

Tabela 2: Método Crank-Nicolson com simulação direta (DNS)

Nível	Δt	$t(c_{d,max})$	$c_{d,max}$	$t(c_{l,max})$	$c_{l,max}$	$\Delta p(8s)$
2	0.02	3.94	2.9670828	5.72	0.46536749	-0.11087478
2	0.01	3.94	2.9678846	5.71	0.45473204	-0.1113912
2	0.005	3.935	2.9682856	5.71	0.44797908	-0.11156249
2	0.0025	3.935	2.9684852	5.7075	0.44485994	-0.11163467
2	0.00125	3.935	2.9685848	5.70875	0.44322709	-0.11166792
3	0.02	3.94	2.94816	5.7	0.490578	-0.111436
3	0.01	3.94	2.94897	5.7	0.481648	-0.111718
3	0.005	3.935	2.94938	5.7	0.475536	-0.111831
3	0.0025	3.935	2.94958	5.7025	0.472414	-0.111888
3	0.00125	3.935	2.94968	5.70125	0.470737	-0.111918

Tabela 3: Método θ de passo fracionado com DNS

Fazendo uma comparação com o artigo de John [7] e com Schäfer e Turek [13] nota-se que os métodos CN e FS mostraram-se apropriados para o cálculo de todos os coeficientes. O coeficiente de sustentação é muito sensível e sofre bastante variação ao longo do tempo, por isso no nível 2 ainda não foi possível encontrar valores dentro do intervalo de referência de Schäfer e Turek [13], mas os valores encontrados neste trabalho estão mais próximos do intervalo ótimo do que em John [7].

Agora, serão feitas algumas análises deste exemplo utilizando o modelo de deconvolução de Leray. A grande vantagem do modelo estudado é obter as soluções esperadas com menos graus de liberdade que os exemplos com DNS.

Com uma malha no nível 1, conseguiu-se aproximar o coeficiente de arrasto a partir do modelo de deconvolução Leray1 e testou-se também para o modelo de deconvolução com Leray0 (ver Tabela 4). Considerou-se $\delta = \frac{\pi r}{n}$, onde r é o raio do cilindro e n é o número de pontos na borda do cilindro. Esta escolha de δ tem relação com o incremento da malha próximo ao cilindro, onde ocorre maior variação no escoamento.

Observe que somente com Leray1 são obtidos valores no intervalo de referência. Isso confirma a observação feita em Layton et al. [10], que ao longo do tempo os modelos de deconvolução de

-	-	DNS		Modela	b Leray0	Modelo Leray1		
Nível	Δt	$t(c_{d,max})$	$c_{d,max}$	$t(c_{d,max})$	$c_{d,max}$	$t(c_{d,max})$	$c_{d,max}$	
1	0.02	3.92	$2,\!8722666$	3,92	3.107692	3,94	2,9615456	
1	0.01	3.92	$2,\!8730993$	3,93	3.1085435	3,92	2,9624477	
1	0.005	3.92	$2,\!8735152$	3,925	3.1089547	3,92	2,9628647	
1	0.0025	3,9175	$2,\!8737253$	3,925	3.109161	3,92	2,9630732	
1	0.00125	3.9175	$2,\!8738297$	3.92625	3.1092645	3,92125	2,9631777	

Leray com N ≥ 1 tendem a ficar corretos, enquanto com o modelo de Leray0, da mesma forma que com DNS, o erro pode crescer ao longo do tempo.

Tabela 4:	Coeficiente	de	arrasto	na	malha	1	com	\mathbf{FS}
-----------	-------------	----	---------	----	-------	---	----------------------	---------------

Com a malha no nível 2, conseguiu-se aproximar o coeficiente de sustentação no intervalo de referência a partir do modelo de deconvolução Leray3 (ver Tabela 5). Ainda com $\delta = \frac{\pi r}{n}$.

A escolha por Leray3 é justificada pelo fato que Leray1 e Leray2 não aproximaram todos os coeficientes de maneira ótima. A partir disso confirma-se o argumento exposto anteriormente, que quanto mais filtros são aplicados, maior a ordem de aproximação do modelo de Leray.

Todas as simulações dos coeficientes estão no intervalo de referência de Schäfer e Turek. Note que o c_l com DNS não era obtido no intervalo ótimo (ver Tabela 3).

Nível	Δt	$t(c_{d,max})$	$c_{d,max}$	$t(c_{l,max})$	$c_{l,max}$	$\Delta p(8s)$
2	0.02	3.94	2.968728	5.72	0.4912897	-0.11062063
2	0.01	3.94	2.9690268	5.71	0.48043859	-0.11122779
2	0.005	3.935	2.9694297	5.715	0.47249932	-0.11142283
2	0.0025	3.9375	2.9696298	5.7125	0.47194154	-0.11150124
2	0.00125	3.9325	2.9697301	5.7125	0.47083318	-0.11153619

Tabela 5: Modelo de Leray3 com método temporal FS e malha no nível 2

Por fim, na Figura 2, o gráfico com o histórico temporal do coeficiente de sustentação comparando os modelos com DNS nos níveis de malha 2 e 3, e com o modelo de Leray3 com a malha no nível 2. Conclui-se que o modelo Leray3 aproximou o coeficiente de sustentação com um nível a menos de malha.

Figura 2: Evolução temporal do c_l com o método temporal FS e $\Delta t = 0.00125$

5. Conclusão

Os dois métodos temporais testados mostraram algumas diferenças. O método de CN aproximou bem as soluções das equações de Navier-Stokes, mas as soluções ficaram menos satisfatórias que com o método FS. Sabe-se que o método ser apenas A-estável faz com que tenha oscilações numéricas que podem ser corrigidas apenas com passos de tempo suficientemente pequenos, Tu-rek [15]. Enquanto FS, por ser fortemente A-estável, é capaz de aproximar as soluções com passo de tempo maior sem apresentar instabilidade.

No exemplo onde simulou-se os coeficientes aerodinâmicos, observou-se que os resultados obtidos foram mais satisfatórios que em John [7], e ainda melhor se comparados com os resultados obtidos com a regularização de Leray, ver Tabela 5. Além disso, confirmou-se o fato do modelo de deconvolução de Leray aproximar as soluções em níveis de malha mais grossa, onde modelos com DNS não conseguem capturar tais soluções satisfatoriamente.

Referências

- M. Bertero and P. Boccacci. "Introduction to Inverse Problems in Imaging". Institute of Physics Pub., 1998.
- [2] M. O. Bristeau, R. Glowinski, and J. Periaux. Numerical methods for the Navier-Stokes equations. applications to the simulation of compressible and incompressible viscous flows. *Computer Physics Reports 6*, pages 73–187, 1987.
- [3] A. Dunca and Y. Epshteyn. On the stolz-adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM Journal on Mathematical Analysis, 37(6):1890 1902, 2006.
- [4] M. Gunzburger. "Finite Element Methods for Viscous Incompressible Flows: a Guide to Theory, Practice, and Algorithms". Computer science and scientific computing. Academic Press, 1989.
- [5] F. Hecht. "Freefem++". Laboratoire Jacques-Loius Lions, Université Pierre et Marie Curie, Paris, Third Edition, Version 3.19.
- [6] J. Heywood and R. Rannacher. Finite-element approximation of the nonstationary Navier-Stokes problem. part iv: Error analysis for second-order time discretization. SIAM Journal on Numerical Analysis, 27(2):353–384, 1990.
- [7] V. John. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. International Journal for Numerical Methods in Fluids, 44(7):777-788, 2004.
- [8] V. John, G. Matthies, and J. Rang. A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations. *Computer Methods in Applied Mechanics and Engineering*, 195(44-47):5995 - 6010, 2006.
- [9] W. Layton. "Introduction to the Numerical Analysis of Incompressible Viscous Flows". Computational Science and Engineering Series. Society for Industrial and Applied Mathematics, 2008.
- [10] W. Layton, C. C. Manica, M. Neda, and L. G. Rebholz. Numerical analysis and computational testing of a high accuracy leray-deconvolution model of turbulence. *Numerical Methods for Partial Differential Equations*, 24(2):555–582, 2008.
- [11] J. Leray. Essai sur les mouvements plans d'une liquide visqueux que limitent des parois. Journal de Mathématiques Pures et Appliquées, Paris, Série IX, 13:331-418, 1934.
- [12] C. Manica and S. Kaya Merdan. "Convergence analysis of the finite element method for a fundamental model in turbulence". Technical report, University of Pittsburgh, 2006.
- [13] M. Schäfer and S. Turek. Benchmark computations of laminar flow around a cylinder. Flow Simulation with High-Performance Computers II, 1996.
- [14] M. M. Souza. "Solução das Equações de Navier-Stokes para Fuidos Incompressíveis via Elementos Finitos". Dissertação de Mestrado, PPGMAp-UFRGS, 2013.
- [15] S. Turek. A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit projection methods. International Journal for Numerical Methods in Fluids, 22(10):987–1011, 1996.