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Abstract: Chirped pulses are used in time stretch analog to digital converters to stretch high
speed electric signals so that they can be measured with conventional detectors. Here a time
domain beam propagation method for strongly chirped signals propagating along a specified di-
rection is presented. By examining the propagation of chirped pulses in waveguides we derive a
phase factor which captures the rapidly oscillating part of the chirped pulse. We then solve for
the slowly varying envelope with respect to this phase factor in a time window moving with the
pulse. The new method is applied to simulation of electro-optical modulators for chirped pulses
with promising results.
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1 Introduction

The Beam Propagation Method (BPM) [1, p. 329ff.] is used in optical and acoustical wave
propagation for solving the Helmholtz equation when there is an assumed propagation direction
and a specified frequency (wavenumber). It employs the Slowly Varying Envelope Approximation
(SVEA) to factor out a fast varying phase function. For propagation along the z axis it takes
the form

φ(x) = exp (−jβz)ψ(x),

where β is a method parameter to be chosen appropriately. This method has been extended to
time domain, TD-BPM, to simulate pulses propagating in optical devices. In a series of papers
Masoudi et al have developed time domain BPM with a moving time window following the pulse
with the group velocity [2, 3, 4]. In their approach a pulse traveling along the positive z direction
with mean angular frequency ω0 is written

φ(x, t) = ψ(x, y, z, t− z/v) exp (j(ω0t− βz)), (1)

where v is an estimate of the pulse velocity and the variable τ = t − z/v is called the moving
time and will replace the ordinary time variable in the computations.

An ultrashort optical pulse is an electromagnetic pulse with duration less than a pico second
and down to a femto second [5]. Such pulses are broadband in spectrum and when they travel
through a dispersive optical fiber they are transformed into chirped pulses of much longer time
duration (the time stretch can be of order 10000 or more). Since different frequencies travel with
different speeds in a dispersive fiber this will implicitly induce a time to wavenumber mapping
which is important for example for time stretched analog to digital converters [6]. The phase
factor in Equation (1) will then not capture the oscillation of the chirped signal and therefore
the approach in its current state will not work for this case. After the dispersive fiber, the
chirped signal is guided into other optical devices. Here our interest is to study propagation in
electro-optical modulators [7, pp. 2-3].
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In this work we extend the TD-BPM to strongly chirped pulses. This is accomplished by
utilizing a modified phase factor which takes into account that the frequency varies in time
and space for chirped signals. The specific form of this phase factor is derived by analyzing
propagation of chirped pulses in optical waveguides by means of the method of stationary phase.

We illustrate the method by applying it to simulations of electro-optical modulators with
fast electric signals.

2 Pulses in waveguides

In this section we analyze pulses travelling in waveguides by means of the Fourier transform
and the method of stationary phase. We first analyze propagation of pulses without chirp, and
see that such analysis motivates the choice of phase factor made by Masoudi et al for their
TD-BPM in [2, 3, 4]. We then investigate the generation of chirped pulses, before we analyze
the propagation of chirped pulses in waveguides, in order to find a suitable phase factor for that
case.

2.1 Propagation of non-chirped pulses

Propagation along the z-direction in an optical waveguide can be characterized by a frequency
dependent propagation constant β(ω) and a mode shape M(x, y, ω), which can both be obtained
by solving a mode problem in the cross section. Let φ0(t) be the initial complex intensity function
whose frequency content is centered around the angular frequency ω0. Given this, we can write
the propagation of this pulse in the waveguide

φ(z, t) =
1

2π

∫
exp (j(ωt− β(ω)z)) φ̂0(ω) dω, (2)

where φ̂0 is the Fourier transform of φ0. Expand the propagation constant in Taylor series
around ω0,

β(ω) = β(ω0) + (ω − ω0)β′(ω0) +
1
2

(ω − ω0)2B(ω).

For future reference we introduce the phase index np (inverse of phase velocity) and the group
index ng (inverse of group velocity) as

np =
β(ω0)
ω0

, ng = β′(ω0).

The phase in the Fourier integral (2) can now be written

ωt− β(ω)z = (ω0t− β(ω0)z) + (ω − ω0)
(
t− β′(ω0)z

)
− 1

2
(ω − ω0)2B(ω)z.

Inserting into (2) and using the definition of the inverse Fourier transform yields

φ(z, t) = exp (j (ω0t− β(ω0)z))F−1

[
exp

(
−j 1

2
ω2B(ω + ω0)z

)
φ̂0(ω + ω0)

] (
t− β′(ω0)z

)
. (3)

This can be compared with the decomposition in (1) into an explicit fast varying phase function
and a slowly varying envelope moving with the group velocity.

2.2 Creation of chirped pulses

Chirped pulses are generated by letting pulses pass through dispersive optical fibers, which can
be viewed as long waveguides, hence (2) applies. If we neglect non-linear effects on the fiber,
the Fourier transform of the signal after leaving the fiber is then exp

(
−jβf(ω)Lf

)
φ̂0(ω), where
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βf and Lf are the propagation constant and length, respectively, of the dispersive fiber, and φ0

is the signal entering the fiber.
In the next section we analyze the propagation of chirped pulses through waveguides, so

that the signal leaving the fiber is the one entering the waveguide. To simplify notation we let
κ(ω) = βf(ω)Lf. From (3) it follows that the zeroth and first order terms of βf (and hence of
κ) correspond merely to a phase shift and translation in time, respectively, of φ0, which may be
ignored in the following analysis. We can then write, for linearly chirped signals,

κ(ω) =
1
2
κ2(ω − ω0)2. (4)

2.3 Propagation of chirped pulses

Th beam propagation method works well when the material parameters of the optical device
change slowly along the propagation direction. In this sense it can be considered as a weakly
disturbed waveguide. To derive an appropriate BPM approach for chirped signals we assume
that the signal φ0 enters first a fiber to generate chirp and then a waveguide characterized by
a propagation constant β(ω). Then according to Equation (2), the complex amplitude can be
written as an oscillatory integral

φ(z, t) =
1

2π

∫
exp (jθ(z, t, ω)) φ̂0(ω) dω,

with
θ(z, t, ω) = ωt− β(ω)z − κ(ω).

To analyze this we need the following well known result [8].

Theorem 1 (Method of stationary phase in one dimension). Consider the one dimensional
integral

I =
∫ ∞
−∞

F (ω) exp(jθ(ω)) dω

where θ is a rapidly varying function relative F . Assume θ has one stationary point ωs

θ′(ωs) = 0.

Then

I ≈

√
2π

jθ′′(ωs)
F (ωs) exp(jθ(ωs)).

According to the theorem of stationary phase the major contribution comes from where the
derivative of the phase function is zero

0 = θ′ω(z, t, ω) = t− β′(ω)z − κ′(ω). (5)

This defines implicitly the stationary wavenumber ωs = ωs(z, t) as a function of the time and
the z-coordinate. For z = 0, this yields the time to wavenumber mapping mentioned in the
introduction. This is implicitly defined by

t = κ′(ω(t)).

According to the one dimensional version of the method of stationary phase we approximately
have

φ(z, t) ≈ 1√
−2πj (β′′(ωs)z + κ′′(ωs))

exp (j(ωst− β(ωs)z − κ(ωs)) φ̂0(ωs),

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0277 010277-3 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0277


where ωs = ωs(z, t). This formula is our motivation for the TD-BPM method for propagation of
chirped signals to be presented in the next section. Central to this is the phase function defined
by

ν(z, t) = ωs(z, t)t− β(ωs(z, t))z − κ(ωs(z, t)).

We now aim to compute this for low order Taylor approximations of β(ω) and κ(ω). We note
that for chirp generation a fiber of length of kilometer order is used, while the length of the
waveguides (or optical devices) of interest is of centimeter order. Due to the short distance it
suffices to expand the waveguide propagation coefficient to first order,

β(ω) = β(ω0) + β′(ω0)(ω − ω0) = ω0np + ng(ω − ω0).

Inserting this and κ from (4) into relation (5) for the stationary wavenumber and solving for
ωs we get

ωs = ω0 +
t− ngz
κ2

= ω0 +
τ

κ2
.

The expression for ν then, after simplification, becomes

ν(z, τ) = ω0τ + ω0(ng − np)z +
τ2

2κ2
. (6)

The phase factor for the TD-BPM developed in [2, 3, 4] uses the two first terms of this
expression ν(z, τ) = ω0τ + ω(ng − np)z. It is the last term that takes the chirping of the signal
into account.

3 Time domain BPM for chirped signals

The wave equation for a space dependent permittivity ε(x, z) is

∆tφ+ ∂2
zφ− ε(x, z)∂2

t φ = 0,

where we have split the Laplacian operator into a transversal and a z dependent part ∆ = ∆t + ∂2
z .

The moving time window is implemented by a change of variables. We use the moving time τ ,
defined as

τ = t− ngz.

For clarity we also make the substitution ζ = z. By the chain rule we have

∂z = ∂τ
∂τ

∂z
+ ∂ζ

∂ζ

∂z
= ∂ζ − ng∂τ ,

∂t = ∂τ
∂τ

∂t
+ ∂ζ

∂ζ

∂t
= ∂τ .

Then

∂2
z = ∂2

ζ − 2ng∂ζ∂τ + n2
g∂

2
τ ,

∂2
t = ∂2

τ .

In the moving time window coordinates, the wave equation becomes

∂2
ζφ− 2ng∂ζ∂τφ = (ε− n2

g)∂
2
τφ−∆tφ,

where we have collected all terms including derivatives with respect to ζ on the left hand side.

Remark 1. Be aware of that although ζ = z, the partial derivatives with respect to these variables
do not coincide. Indeed it seems as though the mixed derivative term 2ng∂ζ∂τ is missing in the
works of Masoudi et al [2, 3, 4].
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For the derivation we assume the slowly varying envelope approximation

φ(x, z, t) = exp (jν(ζ, τ))ψ(x, ζ, τ),

with the phase factor exp (jν(ζ, τ)) and slowly varying envelope ψ. The second order derivatives
of φ become

∂2
ζφ = exp (jν)

(
∂2
ζψ + 2j∂ζν∂ζψ +

(
j∂2
ζν − (∂ζν)2

)
ψ
)
,

∂ζ∂τφ = exp (jν) (∂ζ∂τψ + j∂ζν∂τψ + j∂τν∂ζψ + (j∂ζ∂τν − ∂ζν∂τν)ψ) ,

∂2
τφ = exp (jν)

(
∂2
τψ + 2j∂τν∂τψ +

(
j∂2
τν − (∂τν)2

)
ψ
)
.

Collect terms in the wave equation for ψ and divide by exp (jν(ζ, τ)) to get

∂2
ζψ − 2ng∂τ∂ζψ + a∂ζψ = (ε− n2

g)∂
2
τψ + (b+ c(ε− n2

g))∂τψ + (d+ e(ε− n2
g))ψ −∆tψ. (7)

All coefficients here are functions

a = 2j [∂ζν − ng∂τν] ,
b = 2jng∂ζν,
c = 2j∂τν,

d = 2ng (j∂ζ∂τν − ∂ζν∂τν)−
(
j∂2
ζν − (∂ζν)2

)
,

e = j∂2
τν − (∂τν)2.

In the paraxial approximation, the first two terms on the left hand side of (7) are omitted. We
can write

a∂ζψ = (ε− n2
g)∂

2
τψ + (b+ c(ε− n2

g))∂τψ + (d+ e(ε− n2
g))ψ −∆tψ.

Inspired by the analysis in the previous section we suggest that for chirped pulses, choosing ν
as in (6) is appropriate.

4 Numerical examples

In this section we will study the propagation of a chirped optical pulse in an electro-optical
modulator with co-propagating modulating electric signal. The electric signal causes a shift in
the permittivity which affects the optical pulse. We begin by defining the moving time window
and then extend the initial pulse to this window.

4.1 Initial signal

Maybe the simplest chirped pulse is the linearly chirped Gaussian signal which takes the form

φchirp(t) =
1√

2πσchirp
exp

(
− t2

2σ2
chirp

)
exp (jω0t) , (8)

where
σchirp =

√
σ2 + jβ̂2L =

√
σ2 + jκ2.

Note that σchirp is complex and it is this fact which causes the chirp.
Let Ωcross be the cross section of the geometry normal to the propagation direction. The

moving time window is the product space Ωcross× [−T, T ] where T is chosen so large that it by
a wide margin covers the interesting part of (8). Let M(·, ω) be the frequency dependent mode
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solution for the initial permittivity ε(x, z0). A reasonable initial signal defined in the whole time
window is then

φ0(x, t) = φchirp(t)M(x, ω(t)).

Since the frequency varies in time as described by the time to wavenumber mapping we can take
the dependence of mode shape on time into account (a simplified version would be φ0(x, t) =
φchirp(t)M(x, ω0), where ω0 is the mean frequency). The initial function ψ0 can be obtained
from φ0 by factoring out the phase factor exp(jν(0, t)).

Remark 2. We now check the accuracy of the phase estimate (6) for a chirped Gaussian signal.
The relative error compared to the phase for the true function is∣∣∣∣arg(φ0(x, t))− ν(0, t)

arg(φ0(x, t))

∣∣∣∣ =
σ4

κ2
2

.

Hence we have a very good initial phase estimate whenever σ is small, as it will be in the
interesting cases. We note that the error grows with decreasing κ2. This is because the method
of stationary phase is not applicable to non-chirped pulses.

4.2 Simulation of electro-optical modulator

The method has been implemented with finite elements, using FEniCS [9], in the moving time
window Ωcross × [−T, T ] and a Crank-Nicolson scheme for stepping in the z direction. The
moving time window is chosen large enough that, for first simulation results, homogeneous
Neumann conditions may be used. In the implementation, the term ε∂2

τψ has been replaced by
∂τε∂τψ, for easier implementation of the weak formulation. This may be justified considering
the small time derivative of ε.

Figure 1: The upper left and the upper middle subfigures show the absolute values of the sum
and the difference, respectively, of the modulated and un-modulated signal, and the upper right
figure shows the sine shaped modulated permittivity. The lower subfigures are line plots of the
corresponding quantities along the central axis.

We now apply the method to simulation of electro-optical modulators. For each case two
simulations are performed: one with constant permittivity and the other with a shifted permit-
tivity moving along with the pulse, corresponding to the unmodulated and modulated arm of
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the modulator, respectively. The results from the shifted and un-shifted simulations are added
and subtracted

ψadd = ψshift + ψno-shift, ψsub = ψshift − ψno-shift.

We consider a case of sine shaped shifted permittivity with maximum amplitude Vπ, the
voltage causing a half wavelength shift of the signal for the mean frequency f0. At maximum
signal amplitude (corresponding to minimum permittivity) there should thus be cancellation in
ψadd. The initial chirped pulse is chosen as described in the previous section, with the following
parameters: σ = 1.37 · 10−13 s, κ2 = −5.10 · 10−23 s2, ω0 = 1.22 · 1015 s−1.

Figure 1 shows the absolute values of ψadd and ψsub at the end of the modulator. Mod-
ulation is not perfect, but there is a clear tendency towards the expected cancellation in both
ψadd and ψsub.

5 Conclusion

We have developed an extension of the time-domain beam propagation method for strongly
chirped signals. An appropriate phase factor was derived by analyzing propagation of chirped
pulses in waveguides by means of the Fourier transform and the method of stationary phase.
The method has been implemented and first simulations have been performed for electro-optical
modulators. The results are promising, but imperfections in the modulation will be investigated
further.
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