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Abstract— Microbeam models with surface and piezoelectric effects are considered for atomic force microscopy
(AFM). These models include rotatory inertia and shear deformation as proposed by Timoshenko and they
are subject to forcing loads. Eigenanalysis of the free dynamic matrix model is performed with the use of
a fundamental matrix response to determine the modal frequency equation and matrix mode shapes. The
fundamental response governs the behaviour of a non-classical damped second-order matrix differential equation.
It was observed that surface effects are influential for the natural frequency at the nanoscale. When the beam
length increases from nanometers to microns, the surface effects disappear and the results converge into natural
frequencies of classical Timoshenko model. Simulations with the piezoelectric model were performed to observe
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the effects of forcing pulses located at different positions of the microbeam.
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shenko beam model.

1 Introduction

In this work, transversal vibrations of interest in
atomic force microscopy (AFM) are discussed with
a microbeam subject to surface effects and built
with smart materials. The motion of the mi-
crobeam is governed by the Timoshenko model.
The surface effects are observed when downsizing
from the micron scale to the nanoscale. The ac-
tion of piezoelectric materials in the role of actu-
ators and/or sensors are considered through pulse
forcing at different locations of the microbeam.

A typical AFM consists of a sensitive micro-
cantilever with a mounted sharp tip acting as force
sensor, a system that moves the sample or the sen-
sor in order to probe the sample surface, a detec-
tion sensor system of the cantilever deflection, a
feedback system which regulates the force inter-
action and an electronic controller system which
records movements, controls the feedback loop
and sends the measured data to a computer pro-
cessing unit. The geometry and the material of
the cantilever both contribute to the properties
that make a cantilever suitable for any particu-
lar imaging modes. Both silicon and silicon ni-
tride microcantilevers are commercially available
but reflective back surface coating is used for a
better feedback. New generations of nanobeams
have included piezoelectric materials locally at-
tached at the microbeam with the role of sensors
and/or actuators (Jalili, 2010), (Laxminarayana
and Jalili, 2004), (Eslami and Jalili, 2012).
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The use of the AFM, as nanomachining or
as a plataform for chemical and biological sen-
sors in connection with surface and thermal ef-
fects, make that the effects of transverse shear de-
formation and rotary inertia on the frequency be
significant. Furthermore, to model a thick beam
with high frequency excitation, as usually occurs
in micro-systems, the Timoshenko theory of beam
must be employed. With smaller values of the ra-
tio of the probe length to its thickness, the Tim-
oshenko beam theory is able to predict the fre-
quencies of flexural vibrations of the higher modes
with higher stiffness for the AFM cantilevers (Hsu
et al., 2007).

When the associated length scales are suffi-
ciently small, the applicability of classical con-
tinuum models can not be appropriate. This
topic have been discussed in the corresponding
literature with proposed mathematical models
that includes different effects, such as surface ef-
fects and non-local effects which modifies con-
ventional beam theories for size dependent sys-
tems. When the characteristic sizes of materials
and structures shrink to microns or nanometers,
surface/tension effects must be taken into account
because they play an significant role in their me-
chanical behavior due to the increasing ratio be-
tween surface/interface area and volume (Gurtin
et al., 1998), (Abbasion et al., 2009).

The two models considered in this work are
formulated as a second-order evolution system
subject to initial, forcing and boundary data. The
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distributed matrix impulse response or initial-
value Green matrix response is used for charac-
terizing transients and forced responses in AFM.
The vibration modes can be explicitly formulated
in terms of a fundamental matrix response of a
second-order matrix ordinary differential equation
where the corresponding stiffness matrix coeffi-
cient depends non linearly upon the frequency.
This matrix response can be determined in closed
form in terms of a scalar solution that has a com-
pletely oscillatory behavior beyond a critical fre-
quency value (Claeyssen et al., 1999), (Claeyssen
and Costa, 2006).

Simulations with surface effects were per-
formed to observe the influence upon the natu-
ral frequency at nanoscale. For the piezoelectric
model, pulse forcing effects were considered at dif-
ferent locations of the microbeam and observed
that they are more sensed when closer to the tip-
sample interaction.

2 Timoshenko beam with surface effects

We consider the microcantilever having length L,
width b, thickness 2h and mass density area of the
beam p. Welet I = % be the moment of inertia
of the cross section area A = 2bh, w(t, z) the flex-
ural deflection of the beam, (¢, x) the rotation
angle of cross section of the beam, f(¢,x) a trans-
verse dynamic load and ¢(¢,z) a moment load.
The governing equations are given by (Abbasion
et al., 2009),

pAwy — KG AW,y + KGAY, = f(tv 1‘),
_ (1)
p—[wtt - El¢xx —rkGA (wm - ’(/J) = q(tax)a

where

kGA KGA — (T4 + )b, (2)
ET = (EI+2bh*E,), (3)

are the effective curvature effect and flexural rigid-
ity, respectively. Here 7, and 7, denote the up-
per and lower surfaces residual tensions and F
is a surface elastic modulus. The boundary con-
ditions are those of a cantilever beam or subject
to balance of the moment and shear at the free
end x = L. The Young’s modulus, shear modu-
lus, mass density, shear deformation factor of the
beam are denoted as E, G, p and k, respectively.

2.1 Matrix formulation

The coupled Timoshenko model (1) can be written
as a second-order differential equation with matrix
coefficients

Mi + Kv = F, (4)
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where
I R N
V= , F= q(t :L‘) , (5)
Y(t, ) ’
pA 0 2
M = ,K:E&az—i—Naﬁ—i—R7
0 ol T i
(6)
with

0 0
R= .
0 wkGA

For a microcantilever beam of length L, we
have the boundary conditions in a matrix formu-
lation

((1) ?)v(t,@)—i—(g 8)%(7&,0):0,

( 0 )v(t,L)+ ( . )vx(t,L)zo,

or in a more compact form

Av(t,0) + Bv,(t,0) = 0,
Pv(t, L) + Qv,(t,L) = 0. (8)

2.2 Eigenanalysis

The search of exponential solutions

v(t, ) = Mv(z),  v(z)= ( 3583 ) (9)

of the unforced Timoshenko model

0%*v
Mﬁ + Kv =0, (10)
subject to general separated homogeneous bound-
ary conditions (8). And v is the general solution
of a second-order matrix differential equations and
is given by (Claeyssen et al., 1999)

v(z) = h(z)c; + h'(x)cy, (11)

for constant 2 x 1 vectors ¢; and cy. Here h(x)
is the 2 x 2 matrix solution of the initial value
problem

Mh"(z)+ Ch'(z) + K(M\)h(z) =0, (12)
h(0) =0, MW(0)=1,

where 0 denotes the 2 x 2 null matrix and I the
2 x 2 identity matrix. The matrix coefficients
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PAN?

Since we have the clamped boundary condi-
tion v(0) = 0, by using the initial values of h(x)
in (11), it turns out that ca = 0. Thus we have to
determine A so that

Mol + kG A

v(z) =h(z, ey (13)
satisfies the boundary condition at the free end
x = L. By assuming homogeneous boundary con-
ditions, we have the nonlinear eigenmatrix prob-
lem

U(Me = (Ph(L,\) + Qh/(L, \))cy = 0. (14)

From this, it turns out the characteristic equation

A(X) =det(U) = 0. (15)
We thus have the reduced system
. T
Upec1 =0, c1 = < H ) ; (16)
C12
with
ad"(L)
Up =
—byd” (L) + N2ed' (L)
(17)

—ad" (L) + X2cd'(L)
ad’(L) — AN?cd(L) — a,,d" (L)

The natural frequencies A = iw can be ob-
tained by substituting the roots of the character-
istic equation

A(w) = —wice (d'(L))? + w?[ac d(L) d"(L)—

(ae + cby,) d'(L) d"(L)] + (a® — aan) (d"(L))*~
abm (d///(L))Z7
(18)

where

¢ senh(ex) — e sen(d0x)
d) = ab,€0(6% + €2)

bl

(19)

is the solution of the initial value problem
abp,d™) (z) + (—aeX? — cX2by, — a? + apma)d” (z)+
(eX%a + chte)d(z) = 0,

d(0)

d'(0) = d"(0) = 0, ab,d" (0) = 1

)
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with
1 —
€ = 2\/292+2\/g4+4r4, (20)
1 p—
§ = 2\/2g2+2\/g4+4r4. (21)
and
a = kGA, c=pA, e=pl, (22)
am = KGA=krGA— (14 +7)b,
bm = FEI=(EI+2bh*E,).
Pt B (me)e
72:i(a7nfa)7'f’74:70>\2 7ajb?2)'

The response h(x) is obtained in (Claeyssen
et al., 1999)

h(z) = (

For a microcantilever beam described by the
Timoshenko model with surface effects, Figure 1
illustrates the size dependence in the natural fre-
quency of Timoshenko classical model and Timo-
shenko model including surface effects. The solu-
tions based on classical Timoshenko beam theory
and Timoshenko beam theory including surface ef-
fects are denoted by TB and TMB, respectively.
The fundamental natural frequencies are normal-
ized to fundamental frequency of cantilever Euler-
Bernoulli beam. In this figure are considered the
parameters utilized in (Abbasion et al., 2009) for
the same purposes. The parameters of surface
elasticity and residual surface tension can be de-
termined by molecule dynamics simulations or ex-
periments. Residual surface stresses can be either
positive or negative, depending on the crystallo-
graphic structure (Wang and Feng, 2007). For an
anodic alumina Al (Young’s modulus E = 70G Pa,
Poisson’s ratio v = 0.3 and p = 2700kg/m3) are
considered two types of crystallographic direction

(a + eX?)d(z) — b d' (z) —amd (z),

ad' (z) —ad” (x) + cA?d(z),

Al[100] : Es = —7.9253N/m and 7 = 0.5689N/m,

Al[111]: E, = 5.1882N/m and 7 = 0.9108N/m.

Figure 1 illustrates the size dependence in the
non-dimensional natural frequency of TMB mi-
crobeams in comparasion to classical solutions of
TB. We can observe that for beam length on the
order of nanometer to microns, the difference be-
tween natural frequencies is apparent and by in-
creasing the length of the microbeam, the results
tend to Timoshenko classical theory, that is, the
surface effects are significant only in nanoscale.
This same behavior was observed in (Abbasion
et al., 2009) for a microbeam simply supported.
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Figure 1: Influence of surface effects and size de-
pendence on the normalized fundamental natu-
ral frequency of the microcantilever for 2h=0.2L,
b=0.4L and x = 5/6

3 Microcantilever beam with
piezoelectric layer

A Timoshenko microcantilever beam actuated by
a piezoelectric layer laminated on one side of
the beam was studied in (Shirazi et al., 2012).
The governing equations included viscous damp-
ing and the moment at the free end is subject to an
applied voltage to piezoelectric layer. The equa-
tions and boundary conditions were established
for a Timoshenko microcantilever with a lami-
nated piezoelectric layer having length L, thick-
ness h? and width b as in Figure 2.

Tﬁq

b

z —
I h%H¢ I

y

Figure 2: Schematic of beam with piezoelectric
actuator

By incorporating the boundary condition due to
piezoelectricity at the free end as a concentrated
forcing into the model, we can describe this later
as a forced damped Timoshenko microcantilever
model. In matrix formulation, we have

MY + C¥ + Kv = F, (24)
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where
w(t, x) 0
v = , F= ,
Y(t, x) Eoi(z)V(t)
M, 0 Ky Ko
M= , K=
0 Moo Ko Ko
C1 0
C =
0 C2
(25)
Here

My = (pPRPb + pPR®b), Moy = (pPIP + p°I°),
K11 = —4(k'PcE hPb + /@’bcg5hbb)aa—;2,
K15 = 4(K'PBshPb + k' hbb) 2|

Ko1 = —4(K"PcE;hPb + k¢l hPb) 2

Koo = —(f1 Iy + 4y 1°) oy + 4(WPc5sh?b + kel hPb),

ki = eiszB b, u(t) =V (t),D =& 1, + &I,

10(1+07)
1241107 °

b 10(1407) p_
K™= T, k

(26)
c1 and co are viscous damping constants, z,, is the
distance between the middle line of the piezoelec-
tric layer and the neutral axis of beam and V (¢)
is the applied voltage to piezoelectric layer, d; ()
is the Dirac delta function applied at z = L.

4 AFM dynamic response

The dynamic response of the Timoshenko model
(1) or equation (24) can be described in terms
of the matrix impulse response or matrix Green
function h(t¢, z, &) of the associated homogeneous
initial-boundary value problem

Mi(t,z,€) + Kh(t,z,£) =0, 0 < 2,6 < L, t>0, (27)
h(07x7§) =0, Mht(07x>§) = 6('T _5)17
Ah(t,0,¢) + Bh,(t,0,£) = 0,
Ph(t7 L7 6) + th(t7 L7 €) = 07

where 0 denotes the 2 x 2 null matrix and I the
2 x 2 identity matrix.

We have that h(t — 7,2,£) acts as an in-
tegrating factor in Lagrange’s adjoint method
(Claeyssen et al., 2013). It turns out the dynamic
response

v(t,z) = [o [ (he(r, 2, E)MVe(E) + h(r, 2, €)Mvi (€)) dedr

+ 1 [t - 7,2, €)F(r,€)dedr + J(v,h)|;
(28)
where J is a term containing effects of the initial-
value Green function with values of v at the
boundary (Claeyssen et al., 2013).
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4.1  Modal approximation of dynamic responses

The Galerkin method (Ginsberg, 2001) can be
used for determining approximate dynamic res-
ponses of the AFM microcantilever beam de-
scribed by the Timoshenko model. From (28), we
actually need to find an approximation of the fun-
damental matrix response h(t,z,£). For this, we
first introduce the block matrix

V(z) = ( vi(z) wva(x) v (x) ), (29)

whose columns are the first n cantilever eigenfunc-
tions (13) corresponding to the microcantilever
eigenvalues, that have been normalized with re-
spect to the mass matrix M. Then we consider
obtaining an approximate response of the AFM
microcantilever Timoshenko model (4)

n

v(t,x) =Y pi(t)vy(z) = V(@)P(t).  (30)

Jj=1

For determining the time amplitudes P7(t) =

((pi(t) palt) pn(t) ) (Claeyssen et al.,
2013), we have

v(t.2) = [E V@RV (a)vo(n)dpt

SEV@BOVT (v (w)dp + [ V(@)h(t — )V (w)fdv.

(31)
Consequently, we obtain the spectral approxima-
tion for the initial value Green matrix response

N .
hen) = 30T vt (32

j=1 J
and for the transfer matrix function

N . VT
b = 3oHOT

j=1

(33)

4.2 Results

The geometrical and material properties of the
microbeam are described in Table 1. The first
four obtained natural frequencies are shown in Ta-
ble 2 for comparison with those of the formulated
model in (Shirazi et al., 2012). The microcan-
tilever shape matrix modes in Figure 3 are mass
normalized. In Figure 4 is presented the displace-
ment component of forced responses, considering
spatial pulse moment excitations, that are modu-
lated with a harmonic input V(¢) and with differ-
ent spatial beam positions.

5 Conclusions

This work has addressed surface effects in AFM
and tip-sample interaction with a microbeam built
with smart materials. It was introduced a matrix
formulation for those microbeams models that in-
clude rotatory inertia and shear deformations of
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Properties of beam element

Parameter(unit) Symbol  Values
Length (um) L 150
Width (um) b 30
Thickness (um) h? 10
Young Modulus (GPa) & 73
Density (Kg/m?) o 2200
Poisson coefficient VP 0.17

Properties of piezoelectric element

Parameter(unit) Symbol  Values
Length (um) Iy 150
Width (um) b 30
Thickness (um) h? 10
Young Modulus (GPa) oy 71
Density (Kg/m?) pP 7700
Poisson coefficient vP 0.31

Table 1: Geometrical dimensions and material
properties of beam and piezoelectric element

Freq. Reference Present work

(KHz) (1)
1st 547 544
2nd 3314 3298
3rd 8833 8797
4th 15951 16210

(1): Reference (Shirazi et al., 2012)

Table 2: Comparative natural frequencies

the Timoshenko model. This formulation has also
been used with microbeams partially covered by
piezoelectric materials leading to the study of mul-
tispan beams (Claeyssen et al., 2013).

The use of a fundamental matrix distributed
response allows to determine modes and frequen-
cies of microcantilevers and to predict forced res-
ponses. The eigenalysis involves the task of
solving a non-classical second-order damped dif-
ferential equation whose stiffness matrix coeffi-
cient depends upon the frequency. It was ob-
served that surface effects are significant only in
nanoscale. Simulations with the forced piezoelec-
tric microbeam model were performed by using
the Galerkin method. The forced responses were
computed when subject to pulse harmonic excita-
tions at different positions.
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Figure 3: Mass normalized matrix shape modes
of a microcantilever beam with a piezoelectric
layer. Left: transversal deflection component
w(z).Right: rotation component (x). First
mode: solid blue line, Second mode: dash-dotted
red line, Third mode: dotted black line, Fourth
mode: dashed gray line.
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