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Abstract: We propose a new numerical method for the computer simulation of the semi-linear
stochastic transport equation. Based on the stochastic characteristic method and the Local Lin-
earization technique, we construct an efficient and stable method for integrating this equation.
For this purpose, a suitable exponential-based approximation to the solution of an associated aux-
iliary random integral equation, together with a Padé method with scaling and squaring strategy
are conveniently combined. Results on the convergence and stability of the suggested method and
details on its efficient implementation are discussed.
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1 Introduction

In this paper we are concerned with the numerical integration of the semilinear stochastic trans-
port equation. {

d
dtu(t, x) + b(t, x)∇u(t, x) + σ(t)dBtdt ∇u(t, x) +G(t, x, u) = 0,
u(0, x) = u0(x),

(1)

where Bt = (B1
t , ..., B

d
t ) is a d−dimensional Brownian Motion, G(t, ., u) ∈ C1(Rd), the matrix

σ(t) = diag(σ1(t), . . . , σd(t)) and the velocity b(t, x) ∈ L2([0, T ], Cm,δ(Rd)), m ≥ 3. This equa-
tion arises by considering the velocity field of the deterministic semi-linear transport equation

as bi(x, t) +
d∑

n=1
σij(t)

dBjt
dt , that is, as the sum of a random field and a spatially dependent white

noise. Formally, the equation (1) is interpreted as the stochastic integral equation u(t, x) = u0(x)−
t∫

0

b(s, x)∇u(s, x) ds−
d∑
i=0

t∫
0

(
∂
∂xi
u(s, x) σi(s)

)
◦ dBi

s −
t∫

0

G(s, x, u)ds,

u(0, x) = u0(x),

where the stochastic integration is taken in the Stratonovich sense.
In applications, these kind of equations arises as a prototype model in understanding a wide

variety of phenomena. It appears in modeling transport in porous media, suspended sediment
transport in open-channel flows, advective transport of substances, waves motions in random
media and from turbulent transport theory, u(t, x) being the concentration of a passive substance
convected by a turbulent fluid, such as smoke in turbulent air.
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The existence, uniqueness, and properties of the solutions of such equations have been well
studied for the case of classical solutions in [8] and [9] (see also [5]) via the stochastic charac-
teristic method. Since in general it is not possible to derive an analytical solution for (1), the
accurate simulation of this equation is essential in order to get a better understanding and a
valuable information of the phenomena in study.

In the scenario of the numerical simulation of transport equation there are some related works
but with focus on the numerical solution of the unidirectional random transport equation, which
essentially is a deterministic transport equation with the velocity and/or the initial condition
been stochastic input parameters (see for instance [3], [4], [11]). However, as far as we know,
the reliable simulation of the stochastic -Stratonovich- transport equation (1) has not been
considered so far. In the present work we attempt to go forward in this direction by proposing
a new numerical method for the computational simulation of (1).

Our aim here is to exploit the stochastic characteristics method and numerical integration
of stochastic and random differential equations together with the local linearization technique
[2] to construct an exponential-based integrator to (1). The idea consist in using the stochastic
characteristic method to get a representation for u(t, x) through the solution of an associated
stochastic differential equation (SDE), a random differential equation (RDE) and a correspond-
ing backward random equation (which can be conveniently transformed to a random integral
equation (RIE) in the forward sense). From a computational point of view the main difficulty
is to construct an efficient integrator for this RIE. For this, we elaborate the following strategy:
at each time interval of integration, the vector field is locally approximated through a first or-
der Taylor expansion and the stochastic term (which has low regularity) is approximated by a
polygonal obtained by a suitable interpolation. In this way successive Caratheodory RDEs are
obtained and their solutions can be explicitly expressed in terms of a single matrix exponential
times a vector. This exponential representation is a key point in the design of feasible com-
putational algorithms implementing the method. The reason is that the involved matrix has a
particular structure that allows to derive an algorithm based on the Padé method with scaling-
squaring strategy in such a way that the overall computational saving achieved are significant
and consequently resulting in accurate and stable numerical schemes. It can be proved that the
rate of convergence of the method obtained in this way, is essentially determined by the moduli
of continuity of Wiener processes.

2 The proposed method

We begin this section by presenting the so called stochastic characteristics method, that will be
used as a key tool to design our method. The stochastic characteristic method says (see [9])
that for each (T,x) the solution u of (1) can be represented as

u(T,x) = ZT

(
u0(X−1

0,T (x))
)
,

where Zt(r) satisfies the RDE

Zt = r +

t∫
0

G(s,Xs(x), Zs) ds, (2)

Xt(x) satisfies the additive noise SDE

Xt = x +

t∫
0

b(s,Xs) ds+

t∫
0

σ(s) ◦ dBs, (3)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0309 010309-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0309


and the inverse stochastic flow satisfies X−1
0,T(x) = R(T ), where R(t) is the solution of the

RIE

R(t) = x−
t∫

0

f(s,R(s)) ds− (ξT − ξT−t), ξt =

t∫
0

σ(s) ◦ dBs, (4)

with f(s,R) = b(T − s,R). Thus, our numerical integrator will be obtained by combining nu-
merical integrators for (3), (2) and (4). Since the solution of (3) can be computed independently
of (2), it allows to work with (2) as a RDE with the stochastic process Xs known in any desirable
point, in particular in the discretization points to be used by the numerical method solving (2).

Let (t)h = {tn : n = 0, 1, . . . , N} be a partition of the time interval [t0, T ] with equidistant
stepsize h. For the stable integration of equation (3) we will use the recent Local Linearization
methods proposed in [2], so we will consider the method

yn+1 = yn + [Id×d 0d×2] e


bx bt b
0 0 1
0 0 0

h
[01×d+1 1]> + ebxhσ(t)(∆B(n+1)). (5)

where ∆B(n+1) = B(tn+1)−B(tn) and bx, bt, b are evaluated in (tn,yn). For the stable integration
of (2) we can use any of the well known methods proposed in [1] and [7]. Specifically, when
using the LL method proposed in [1] we have,

zn+1 = zn + [Id×d 0d×2] e


Gx

(yn+1−yn)
h Gz G

0 0 1
0 0 0

h
[01×d+1 1]> (6)

where Gx, Gz, G are evaluated in (tn,yn, zn).
As mentioned in the introduction, the main difficulty is to elaborate an efficient and stable

integrator for the IRE (4). In that follows we will concentrate in devising a numerical integrator
for this equation.

2.1 An integrator for the RIE

Let us consider the partition (t)h. Starting from the initial value R0 = R(t0), the approximations
{Ri} to {R (ti)}, (i = 1, 2, . . . , N) are obtained recursively as follows.

For each time interval In = [tn, tn+1] we consider the random local problem

R(t) = Rn −
∫ t

tn

f(s,R(s))ds+ ξT−tn − ξT−t. (7)

Then, the idea is to get an approximation of R(tn+1), through the solution of the auxiliary
random equation resulting from approximating f and the stochastic increment in (7). For
this, let’s consider h̄ = hγ with γ > 4 and such that h1−γ ∈ N (we need to take h̄ in this
way in order to guaranty the convergence of the method we are constructing here) and let

(tn)h̄ = {t(i)n : t
(i)
n = tn + ih̄, i = 0, 1, . . . ,

[
h1−γ] + 1} a partition of In. For t ∈ In, let k such

that t
(k)
n ≤ t < t

(k+1)
n , then by a linear interpolation to ξT−t in [t

(k)
n , t

(k+1)
n ] we have

ξT−tn − ξT−t ≈ (ξT−tn − ξT−t(k)n
) +

ξ
T−t(k)n

− ξ
T−t(k+1)

n

h̄
(t− t(k)

n ).

Hence, by using the approximations above and from a first order Taylor expansion of f , it
follows that R(t) is differentiable for t ∈ {In\(tn)h̄} and satisfies the (pathwise) Caratheodory
differential equation

R
′
(t) = AnR(t)+bnt+ ckn, (8)
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where

An = −fx(tn,Rn),

bn = −ft(tn,Rn),

ckn = f(tn,Rn)−AnRn − bntn+
h1−γ∑
k=0

ξ
T−t(k)n

− ξ
T−t(k+1)

n

h̄
1

[t
(k)
n t

(k+1)
n ]

(t) .

Since the inhomogeneity in (8) is discontinuous in {t(k)
n }, the solution at t = tn+1 is obtained

recursively from R(t
(k)
n ) by solving (8) with initial condition R(t

(k)
n ) in t = t

(k)
n .

Thus,

R(t(k+1)
n ) = R(t(k)

n ) +

∫ h̄

0
eAn(h̄−s)(bns+ dkn)ds := ϕ(R(t(k)

n )), (9)

where dkn = ckn + AnR(t
(k)
n ) + bnt

(k)
n .

As we want to approximate R(tn+1), we conclude that the numerical integrator for (4) is
given by concatenating the

[
h1−γ]+ 1 iterations of the function ϕ. That is

Rn+1 = ϕ(h1−γ)(Rn), (10)

for n = 0, 1, . . . , N − 1 with R(t0) = R0 and γ ≥ 4.
An important problem in the evaluation of (10) is the efficient and stable computation of ϕ.

A naive way to do this is through the explicit computation of the integral defining ϕ. However,
this procedure might eventually fail since it is not computationally feasible in case of singular or
nearly singular matrices An (see e.g. comments in [2]). In the next section we will propose an
efficient algorithm for computing Rn+1. Concerning the convergence and velocity of convergence
of the proposed method we have the following theorem.

Theorem: Let’s suppose that the moduli of continuity of ξ satisfies that $ξ

(
h̄
)

= O(h̄β)
and let γβ ≥ 2 and p = min(γβ, 3). Then the numerical integrator (10) is almost surely globally
convergent and we have that with probability one supn ‖R(tn)−Rn‖ = O(hp−1).

Note that, because of the moduli of continuity of the Brownian is 1
2 − ε, we will have a

convergent method just by taking γ > 4.

2.2 Implementation details

In this section an efficient computational algorithm to implement (10) is provided. The initial

key idea is that remarkably R(t
(k+1)
n ) in (9) can be represented in terms of a single appropriated

exponential of a matrix. That is

R(t(k+1)
n ) = R(t(k)

n ) +
[
Id×d 0d×(d+2)

]
eMh̄

[
01×d+1

(
dkn

)>
1

]>
, (11)

with

M =


An bn Id×d 0d×1

01×d 0 01×d 1
0d×d 0d×1 0d×d 0d×1

01×d 0 01×d 0

 h̄.

Thus, the numerical implementation of R(t
(k+1)
n ) is reduced to the use of a algorithm to

compute exponential of matrices (See [10] for a review). In particular, those algorithms based on
the rational (p, q)-Padé approximation (p ≤ q ≤ p+ 2) provide stable approximations. However,
because of the size of the matrix M, a straightforward implementation of the Padé method could
be prohibitively expensive. In the rest of this subsection we propose an algorithm that alleviates
significantly the computational burden. Our key idea is to exploit the special structure of the
matrix M and to adapt conveniently the Padé method with ”scaling and squaring” strategy in
such a way that the computational saving achieved are significant.
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2.2.1 The Adapted Padé algorithm for computing eMh̄

Let’s define C = Mh̄. Let k the minimum integer such that
∥∥C

2k

∥∥ < 1
2 and the coefficients

cj = (2q−j)!q!
(2q)!j!(p−j)! (j = 0, . . . , q), αj = cj

(
h̄
2k

)j
, then eMh̄ ≈

(
Pq(

C
2k

)
)2k

where Pq(
C
2k

) has the

particular form

Pq(
C

2k
) =


U1 U2 U3 U4
01×d 1 01×d α1

0d×d 0d×1 Id×d 0d×1

01×d 0 01×d 1

 ,

with U2 = (U3) b and the matrices U1,U3 and the vector U4 satisfying the systems of linear
equations [

I + A
(
−α1I + AS̄

)]
U1 = [I + A (α1I + AS)] ,[

I + A
(
−α1I + AS̄

)]
U3 = (α1I + AS)−

(
−α1I + AS̄

)
,[

I + A
(
−α1I + AS̄

)]
U4 =

[
S−2α1

(
−α1I + AS̄

)
− S̄

]
b,

where A = Anh̄, b = bnh̄, S =
q∑
i=2
αiA

i−2 and S̄ =
q∑
i=2

(−1)i−2αiA
i−2. Since remarkably the

fundamental matrix of each system above is the same one (also note that has dimension d in
contrast with the order 2d+2 of M), we can exploit this to yield significant improvements in the
computational cost when solving these set of simultaneous equations. That is, we can get the
LU decomposition of

[
I + A

(
−α1I + AS̄

)]
and then use the standard procedure for obtaining

the definitive solution of each system (see for instance [6]). Once that the U1, U2, U3, U4 are

obtained,
(
Pq(

C
2k

)
)2k

has to be computed to conclude the scaling-squaring Padé method.
All in all, after some algebraic manipulations we get that

R(t(k+1)
n ) = R(t(k)

n ) + Ldkn+Q, (12)

where L =

(
2k−1∑
i=0

(U1)i
)

(U3) ; Q =

(
2k−1∑
i=0

(U1)i
)

U4+α1

(
2k−2∑
i=0

(m− 1− i) (U1)i
)

(U3) b.

Note that L and Q remain the same in each subinterval [t
(k)
n t

(k+1)
n ]; so these values are com-

puted only once in each interval [tn tn+1], in consequence the computational saving is significant.
Finally, we get that the approximation Rn+1 to the solution R(tn+1) of (4) is

Rn+1 = (I + LAn)h
1−γ

Rn (13)

+
h1−γ∑
i=0

(I + LAn)i−1 (Q+ L(f(tn, Rn)−AnRn))h−γ

(
h1−γ∑
i=0

(I + LAn)i−1 ∆ξ(k−i)

)
L,

where ∆ξ are increments of the process ξ on the partition (tn)h̄.

Since υ = E((∆ξtk−in
)2) =

tk−in +h̄∫
tk−in

σ2(s)ds, and ∆ξtk−in
∼ N(0, υ), we have that we can simu-

late the stochastic increments by ∆ξ(k−i) =
√
υ N(0, 1), where N(0, 1) is the standard normal

distribution. Se [2] for details.

2.3 The definitive Algorithm

In what follows, the definitive algorithm to approximate in (T,x) the solution u of (1) is de-
scribed. Once we set the stepsize h, and consider the partition (τ)h = {t0 ≡ 0, t1, t2, . . . , tN} of
[0 T ] (with tn+1 = tn + h), the basic steps of the algorithm are:

• Set h̄ = hγ (with γ > 4 and h1−γ ∈ N).
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• Generate the independent random variables ∆ξ(j) and the independent random variables
∆B(j) involved in (13) and (5), respectively.

• From R0 = x, repeat until n = N the computation of Rn in (13).

• From y0 = x, repeat until n = N the computation of yn in (5).

• From z0 = u0(RN ), repeat until n = N the computation of zn in (6).

Then, zN is the approximation to u(T,x).

Note that If we are interested in computing E(φ(u(T,x))), where φ(.) is a bounded func-
tion, we apply Monte Carlo method. For this we need to apply the algorithm M times to get

approximate samples {z[i]
N}Mi=1 from the distribution of u(T,x). Our computed approximation

to E(φ(u(T,x))) would then be the sample mean µ = 1
M

M∑
i=1
φ(z

[i]
N ).

3 A numerical Test

Figure 1 shows a simple example concerning the performance of the proposed methods when
integrating the equation (1) on [0 2]× [0 8] with b = x, σ(t) = 2, G = x, and initial condition
u0(x) = e−2(x−2)2 . For this we consider the temporal and spacial discretization with h = ∆x =
0, 05 and we use the proposed algorithm for computing u(., .) in each point of the grid. For
reference, stochastic characteristic curves are also plotted. From this experiment (and others
not reported here) we can confirm that the proposed algorithm is an attractive alternative for
the purpose of achieving numerical stability with appropriated computational effort.

Figure 1: Computational integration of equation (1), on [0 2] × [0 8] with b = x, σ(t) = 2,
G = x, and initial condition u0(x) = e−2(x−2)2 , by the proposed method. The blue curves in the
x− t plane are characteristic curves.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0309 010309-6 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0309


4 Conclusions

In this work we introduce an effective numerical integrator for the computer simulation of the
semi-linear stochastic transport equation (1). For this we develop a computational method which
is obtained via the solution of an suitable caratheodory-like RDE resulting for a associated RIE
together with the numerical integration of SDEs and RDEs. It is important to note that thanks
to the particular structure of the involved matrix in the proposed method, the computational
burden is considerably reduced -from dimension 2d + 2 to dimension d- (via an adapted Padé
method with scaling-squaring strategy) to the same computational load of solving simultaneous
linear systems through a LU decomposition of a unique matrix. It is worth to note that the
proposed method is well suited for parallel computing and since the computational cost scales
with the dimension of the underlined original equation the approach has great potential even
for very large simulation models.
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