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ABSTRACT

In this work we consider the classical minimum compliance topology optimization in linear elasticity.
In our formulation we consider a control functional that represents control forces acting on a structural
piece intending to minimize a specific cost functional. The cost functional in question comprises the work
of applied body and traction forces. The optimization procedure is performed under suitable constraints
for external forces, control energy, volume restriction and a set of project variables. We highlight the
variational problem addressed may be summarized as the search for the optimal density distributions of
material and control forces which minimize the inner structural work. The topology optimization in this
work uses Solid Isotropic Material with Penalization approach (SIMP) [3, 4], based on the concept of
optimizing the material distribution, through a density distribution, while the control force is inserted in
steady-state form. In order to model the structure, namely a cantilever beam, a bilinear iso-parametric
element was considered relating the Finite Element Method (FEM).

At this point we start to describe the primal variational formulation. Let Ω be a Lipschitzian domain
with a boundary Γ. The boundary Γ is divided in two parts, Γt and Γu, such thatmeasureΩ (Γt ∩ Γu) =
0 and Γt∪Γu = Γ. We define pseudo-density functions ρ1 (x) and ρ2 (x) on Ω such that the fourth order
elasticity tensor E (ρ1) depends, through a penalty parameter, non-linearly on ρ1(x), whereas h(ρ2)
depends non-linearly on ρ2. The compliance optimization can be formulated as

min
ρ1,ρ2,u

l(u),

s.t. a (ρ1, ρ2, u, v)− l (v) = 0 ∀v,∫
Ω ρ1dΩ = η0V,

0 < ρ1min ≤ ρ1 ≤ 1, in Ω,∫
Ω ρ2 dΩ ≤ η1V,

0 < ρ2min ≤ ρ2 ≤ 1, in Ω, (1)

where η0 and η1 are the prescribed volume fractions, ρ1min and ρ2min are the minimum relative densities
and

l(u) =

∫
Ω
f · u dΩ +

∫
Γt

t · u dΓ, (2)

is the work of the external forces, t is the boundary (surface) force, u is the displacement vector and f
is the body force, which can also contain the boundary and point loads with singularity functions. The
term

a(ρ1, ρ2, u, v) =

∫
Ω
ε (u) : E (ρ1) : ε (v) dΩ +

∫
Ω
rh(ρ2)u · v dΩ, (3)

is the virtual work of the stresses, where ε is the infinitesimal displacement-deformation (symmetrized
gradient) operator, that is, ε (u) = 1

2

(
∇u+ (∇u)T

)
. v ∈ U has the role of a Lagrange multiplier, that

is, v = u0 in Γu. The term E(ρ1) = ρp1E
0 is the fourth order positive definite elastic constitutive tensor.
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The term h(ρ2) = ρp2h
0 is a unity localization function and r a scalar magnitude. In both E(ρ1) and

h(ρ2), p is an arbitrary penalty exponent whose value is 3 [4].
The continuum optimization problem (1) was discretized in finite elements. The shape functions

relating the bilinear iso-parametric element were chosen as shown in [1]. Thus, the discrete objective
function may be write in matrix form as J(ρ1, ρ2, u) =

∑n
e=1(ρ1e)

puTe keue +
∑n

e=1(ρ2e)
pruTe heue,

where ue is elemental deflection, ke is the elemental stiffness matrix, e is the elemental index. The
discretization was also extended to constraints.

The sensitivities are defined as the derivatives of the objective function and constraints with respect
to the design variables. In this formulation, the objective function and the constraints sensitivity are
derived through the Lagrangian L, where

L = l (u)− {a (ρ1, ρ2, u, v)− l (v)}+ Λ1

(∫
Ω
ρ1dΩ− η0V

)
+

∫
Ω
λ1 (ρ1 − 1) dΩ

+

∫
Ω
λ2 (ρ1min − ρ1) dΩ + Λ2

(∫
Ω
ρ2 dΩ− η1V

)
+

∫
Ω
λ3 (ρ2 − 1) dΩ +

∫
Ω
λ4 (ρ2min − ρ2) dΩ,

(4)

where the Lagrange multipliers Λ1, Λ2 ∈ R, λ1, λ2, λ3, λ4 are scalar functions and the variations of L
are calculated with respect to u, v, ρ1 and ρ2.

In the numerical simulations we considered the following physics values: E = 210 × 109 =
210GPa, ν = 0.3, ρ1min = 0.001, ρ2min = 0.001, η0 = 0.5, η1 = 0.1 and F = −1 × 106N .
The finite element mesh considered comprises about 40× 16 elements.

The Figure (a) shows the cantilever beam with no loads. The topology of the optimal structure is
shown in Figure (b). Figure (c) refers to the optimal control variable distribution. One can observe that
there is presence of material where the displacement is larger, since the control energy is dependent on
displacements.

Although the variational formulations have not been presented, they were developed in the full work.
From our results we may conclude the structure changes when the control energy is included. Despite
not being directly applicable to the real structural pieces, due to manufacturing limitations, the study is
interesting to show where the optimal controllers are located in order to minimize the inner structural
work. The results are consistent with the problem physics.

Keywords: Variational formulation, Topology optimization, Control

Referências

[1] E. B. Becker, G.F. Carey, J. T. Oden, “Finite Elements: an Introduction”, Prentice-Hall, v. I, New
Jersey, 1981

[2] M. P. Bendsøe, O. Sigmund, “Topology Optimization - Theory, Methods and Applications”, Sprin-
ger, New York, 2003

[3] J.S. Ou, N. Kikuchi, Optimal design of controlled structures, Structural Optimization, 11 (1996)
19-28

[4] O. Sigmund, A 99 line topology optimization code written in Matlab, Structural Multidisciplinary
Optimization, 21 (2001) 120-127

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0415 010415-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0415

