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Abstract

In this work we present the primal and dual problem for a b-complementary
multisemigroup.

1 Introduction

In general, for the master additive system problem (see [1],[2]) there exits results
of lifting facets that can’t be used for non-master because when projecting
a facet of a master polyhedra onto a non-master polyhedra we don’t obtain
a facet of the non-master. In the case where the algebraic structure is an
abelian group, Gastou (see [3]) showed how to lift in a sequential way. This
way does not consider the dual problem of the problem associated in order to
caracterize the facets, this is a motive for the research. The main purpose of this
paper is to define the dual problem of a primal problem for a b-complementary
multisemigroup. We have extended the result in [5] the semigroup for the b-
complementary multisemigroup.

2 The b-complementary Multisemigroup.

An additive system (A, +̂) is defined to be a non-empty finite set A together
with addition +̂ : 2A × 2A → 2A (2A = {H : H ⊂ A}) such that:

(1) {g}+̂{h} ⊆ A, for all g and h in A;

(2) S+̂T = ∪s∈S,t∈T ({s} +̂ {t}), for all S, T ⊆ A.

In this work we use g+̂h in the place of {g}+̂{h}.
An identity is an element of A denoted 0̂ such that 0̂+̂g = g+̂0̂, for all g ∈ A,

a infinity, ∞, is the element of A such that ∞+̂S = S+̂∞ =∞, for all S ∈ 2A.
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We assume that both identity and infinity, are unique if they exist.The set A+

of proper elements is the set A\{0̂,∞}. In this work we denote N by the positive
integer set and R as the set of real numbers.

An additive system is associative if :

(S+̂T )+̂U = S+̂(T +̂U)

for all S, T, U ∈ 2A. And, an additive system is abelian if S+̂T = T +̂S, for all
S, T ∈ 2A.

An expression of the additive system (A, +̂) is defined recursively as follows
(see [4]):

(i) (ξ) is an empty expression;

(ii) (g) is a primitive expression, for all g ∈ A;

(iii) E = (E1+̂E2) is an expression, for all expressions E1 and E2,

For E as (iii) we call the expressions E1 and E2 the subexpression of E.
The evaluation γ (see [4]) is the function of the expressions of (A, +̂) in the

2A defined recursively by

• If E = (ξ) then γ(E) = {0̂};

• If E = (g) then γ(E) = {g}, for all g ∈ A;

• If E = (E1+̂E2) then γ(E) = γ(E1)+̂γ(E2).

The incident vector of an expression E is the vector t = (t(g); g ∈ A+) such that
t(g) is the number of times that (g) appears as the primitive subexpression of
E. Now, let b be a fixed element in an additive system (A, +̂), the expression
E is a solution expression of b if b ∈ γ(E). And t ∈ NA+ is a solution vector of
b if there are a solution expression E of b.

Let (A, +̂) be an abelian associativity additive system. Since (A, +̂) is asso-
ciative and abelian, for any positive integer k and any g ∈ A, we can defined kg
by

kg = γ((

k−times︷ ︸︸ ︷
(g)+̂..+̂(g))).

Now, since there are only a finite number of subsets of A in the sequence
of sets 0g, 1g, 2g, . . . , kg, . . . there are sets which appear an infinite number of
times, such sets are called loop sets of g. The loop of g is the union of all
the loop sets of g. Let s = mg be the first occurrence of any set appearing
for the second time in the sequence (kg | k ≥ 0). Since s appears the second
time in the sequence, s = pg for some p < m, and the sequence of distinct sets
(kg | p < k ≤ m− 1) is the same as (kg | m ≤ k ≤ 2m− p− 1). In fact we have
(p + k + il)g = (p + kg) (where l = m − p) for 0 ≤ k ≤ l − 1 and i ≥ 0, since
(m + k)g = mg+̂kg = pg+̂kg = (p + k)g. The loop order of g is defined to be
this l. Clearly h ∈ A is in loop of g if and only if there exists k ≥ 0 such that
h ∈ (k + il)g for all i ≥ 0, where l is the loop order of g.
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Let (A, +̂) be an abelian associative additive system and b ∈ A+. We say
that (A, +̂) is b − consistent, if and only if b ∈ b+̂kg, for all g ∈ A and for all
k ∈ Z+, and that (A, +̂) is a multisemigroup if it’s g-consistent for all g ∈ A.

Let (A, +̂) be an additive system and b ∈ A, we define

b ∼ g = {x ∈ A : b ∈ x+̂g}.

These sets induce a partial order in A, we say g<̃h when b ∼ g ⊆ b ∼ h.
When the set b ∼ g has a minimum element, this minimum element is called
b − complement of g. The and is denoted by ĝ. A additive system A is called
b-complementary when every element has a b− complement. An element g ∈ A
is infeasible whenever there is not solution of the equation b ∈ g+̂x, that is ,
b ∼ g = ∅. We can assume, without loss of generality, that the additive system
has at most one infeasible element denoted by ∞̂.

3 The Optimization Problem.

Given a finite b-complementary multisemigroup A and a subset M of A, the
b-complementary multisemigroup problem defined as

min
∑
g∈M

c(g)t(g)

s.t: b ∈
∑̂
g∈M

t(g)g

t ∈ NM

where c(g) ∈ R for all g ∈M .
The function π : A→ R has subadditivity (see [2]) if it satisfies:

(i) π(∅) = −∞;

(ii) π(G) = max {π(g) : g ∈ G} for all G ⊆ A;

(iii) π(
{

0̂
}

) = 0;

(iv) π(G) + π(H) ≥ π(G+̂H) for all G,H ⊆ A.

The Subadditivity Cone is the set

C(A) = {(π(g); g ∈ A+) : π is a subadditivity function }

We denote the linearity of C(A) by L(A), π({g}) by π(g) and (L,E) as a base
of C(A) (see [6]).
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4 Duality

Consider the following linear programming problem

min c̃x (1)

s.t: Ãx = b̃ (2)

Ẽx ≥ h̃ (3)

x ≥ 0 (4)

where x and c are an n vetor, b̃ is an m vetor, h̃ is an p vetor, A is an m by n
matrix and E is a p by n matrix. Corresponding to this problem, called primal
problem, consider the following linear problem

max π̃b̃+ µ̃h̃ (5)

s.t: π̃Ã+ µ̃Ẽ ≤ c̃ (6)

π̃ unrestricted, and µ̃ ≥ 0 (7)

where π̃ and µ̃ are row vetor of size m and p, respectively. This problem is
called the dual problem of the primal problem (1)-(4) (see 2.5 in [7]).

Now, for (A, +̂) be a b-complementary multisemigroup, let P (A, b) the con-

vex hull of the set {t ∈ NA+ : b ∈
∑̂
g∈A+

t(g)g}. We denote by P the following
linear programming problem

min
∑
g∈A+

c(g)t(g)

s.t: t ∈ P (A, b)

where c(g) ∈ R for all g ∈ A+.
In ([6]) Araoz and Johnson show the following theorem:

Theorem 4.1 [2, Theorem 3.8] Let (L,E) be a base of C(A). The following
system defined a P (A, b)

∑
g∈A+

ρ(g)t(g) = ρ(b), for all ρ ∈ L (8)

∑
g∈A+

π(g)t(g) ≥ π(b), for all π ∈ E (9)

t(g) ≥ 0, for all g ∈ A+. (10)

In order to defined the dual problem of the problem P we shown the following
theorem.
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Theorem 4.2 The P problem is equivalent to the Pp problem

min
∑
g∈A+

c(g)t(g) (11)

∑
g∈A+

ρ(g)t(g) = ρ(b), ρ ∈ L; (12)

∑
g∈A+

π(g)t(g) ≥ π(b), π ∈ E; (13)

t(g) ≥ 0, g ∈ A+, (14)

where (L,E) is a base for C(A) and c ∈ RA+

Proof. By theorem 4.1 the system (8)-(10) defined a P (A, b), then the problem
P and Pp are equivalent.♦

Theorem 4.3 The dual problem of Pp is the problem Pd

max
∑
ρ∈L

ρ(b)v(ρ) +
∑
π∈E

π(b)w(π) (15)

∑
ρ∈L

ρ(g)v(ρ) +
∑
π∈E

π(g)w(π) ≤ c(g), g ∈ A+ (16)

v(ρ) unrestricted, ρ ∈ L (17)

w(π) ≥ 0, π ∈ E. (18)

Proof. Since L and E are finite sets (see [6]), the system (12)-(14) is the form

of the system (2)-(4) where n = |A+|, m = |L|, p = |E|, (Ã)ρ,g = ρ(g) for

ρ ∈ L, g ∈ A+, (Ẽ)π,g = π(g) for ρ ∈ E, g ∈ A+, b̃ = (ρ(b) : ρ ∈ L),h̃ = (π(b) :
π ∈ E) and c̃ = (c(g) : g ∈ A+). Therefore the dual problem of Pp is the form
by duality linear programming the proof is complete ♦
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