The Primal and Dual Problems of b-Complementary Multisemigroup.

Eleazar Madriz Universidade Federal do Recôncavo da Bahia Cruz da Almas, BA, Brazil, egmlozada@gmail.com

May 12, 2014

Abstract

In this work we present the primal and dual problem for a b-complementary multisemigroup.

1 Introduction

In general, for the master additive system problem (see [1],[2]) there exits results of lifting facets that can't be used for non-master because when projecting a facet of a master polyhedra onto a non-master polyhedra we don't obtain a facet of the non-master. In the case where the algebraic structure is an abelian group, Gastou (see [3]) showed how to lift in a sequential way. This way does not consider the dual problem of the problem associated in order to caracterize the facets, this is a motive for the research. The main purpose of this paper is to define the dual problem of a primal problem for a b-complementary multisemigroup. We have extended the result in [5] the semigroup for the bcomplementary multisemigroup.

2 The b-complementary Multisemigroup.

An additive system $(A, \hat{+})$ is defined to be a non-empty finite set A together with addition $\hat{+}: 2^A \times 2^A \to 2^A$ $(2^A = \{H : H \subset A\})$ such that:

- (1) $\{g\} + \{h\} \subseteq A$, for all g and h in A;
- (2) $S + T = \bigcup_{s \in S, t \in T} (\{s\} + \{t\}), \text{ for all } S, T \subseteq A.$

In this work we use g + h in the place of $\{g\} + \{h\}$.

An *identity* is an element of A denoted $\widehat{0}$ such that $\widehat{0} + \widehat{g} = \widehat{g} + \widehat{0}$, for all $g \in A$, a *infinity*, ∞ , is the element of A such that $\widehat{\infty} + \widehat{S} = \widehat{S} + \infty = \infty$, for all $S \in 2^A$.

We assume that both identity and infinity, are unique if they exist. The set A_+ of *proper elements* is the set $A \setminus \{\widehat{0}, \infty\}$. In this work we denote N by the positive integer set and R as the set of real numbers.

An additive system is *associative* if :

 $(S\widehat{+}T)\widehat{+}U = S\widehat{+}(T\widehat{+}U)$

for all $S, T, U \in 2^A$. And, an additive system is *abelian* if S + T = T + S, for all $S, T \in 2^A$.

An expression of the additive system $(A, \widehat{+})$ is defined recursively as follows (see [4]):

- (i) (ξ) is an *empty expression*;
- (ii) (g) is a primitive expression, for all $g \in A$;
- (iii) $E = (E_1 + E_2)$ is an *expression*, for all expressions E_1 and E_2 ,

For E as (iii) we call the expressions E_1 and E_2 the subexpression of E.

The evaluation γ (see [4]) is the function of the expressions of $(A, \widehat{+})$ in the 2^A defined recursively by

- If $E = (\xi)$ then $\gamma(E) = \{\widehat{0}\};$
- If E = (g) then $\gamma(E) = \{g\}$, for all $g \in A$;
- If $E = (E_1 + E_2)$ then $\gamma(E) = \gamma(E_1) + \gamma(E_2)$.

The *incident vector* of an expression E is the vector $t = (t(g); g \in A_+)$ such that t(g) is the number of times that (g) appears as the primitive subexpression of E. Now, let b be a fixed element in an additive system $(A, \widehat{+})$, the expression E is a *solution expression* of b if $b \in \gamma(E)$. And $t \in \mathbb{N}^{A_+}$ is a *solution vector* of b if there are a solution expression E of b.

Let $(A, \widehat{+})$ be an abelian associativity additive system. Since $(A, \widehat{+})$ is associative and abelian, for any positive integer k and any $g \in A$, we can defined kg by k-times

$$kg = \gamma((\overbrace{(g) + .. + (g)}^{k-times})).$$

Now, since there are only a finite number of subsets of A in the sequence of sets $0g, 1g, 2g, \ldots, kg, \ldots$ there are sets which appear an infinite number of times, such sets are called *loop sets of g*. The *loop of g* is the union of all the loop sets of g. Let s = mg be the first occurrence of any set appearing for the second time in the sequence $(kg \mid k \ge 0)$. Since s appears the second time in the sequence, s = pg for some p < m, and the sequence of distinct sets $(kg \mid p < k \le m - 1)$ is the same as $(kg \mid m \le k \le 2m - p - 1)$. In fact we have (p + k + il)g = (p + kg) (where l = m - p) for $0 \le k \le l - 1$ and $i \ge 0$, since (m + k)g = mg + kg = pg + kg = (p + k)g. The *loop order* of g is defined to be this l. Clearly $h \in A$ is in loop of g if and only if there exists $k \ge 0$ such that $h \in (k + il)g$ for all $i \ge 0$, where l is the loop order of g. Let $(A, \hat{+})$ be an abelian associative additive system and $b \in A_+$. We say that $(A, \hat{+})$ is b - consistent, if and only if $b \in b \hat{+} kg$, for all $g \in A$ and for all $k \in Z_+$, and that $(A, \hat{+})$ is a multisemigroup if it's g-consistent for all $g \in A$.

Let $(A, \widehat{+})$ be an additive system and $b \in A$, we define

 $b \sim g = \{ x \in A : b \in x + g \}.$

These sets induce a partial order in A, we say $g \in h$ when $b \sim g \subseteq b \sim h$. When the set $b \sim g$ has a minimum element, this minimum element is called b-complement of g. The and is denoted by \hat{g} . A additive system A is called b-complementary when every element has a b-complement. An element $g \in A$ is infeasible whenever there is not solution of the equation $b \in g + x$, that is, $b \sim g = \emptyset$. We can assume, without loss of generality, that the additive system has at most one infeasible element denoted by $\hat{\infty}$.

3 The Optimization Problem.

Given a finite b-complementary multisemigroup A and a subset M of A, the b-complementary multisemigroup problem defined as

$$\min \sum_{g \in M} c(g)t(g)$$

s.t: $b \in \widehat{\sum_{g \in M}} t(g)g$
 $t \in \mathbb{N}^M$

where $c(g) \in \mathsf{R}$ for all $g \in M$.

The function $\pi: A \to R$ has subadditivity (see [2]) if it satisfies:

- (i) $\pi(\emptyset) = -\infty;$
- (ii) $\pi(G) = \max \{ \pi(g) : g \in G \}$ for all $G \subseteq A$;
- (iii) $\pi(\{\widehat{0}\}) = 0;$
- (iv) $\pi(G) + \pi(H) \ge \pi(G + H)$ for all $G, H \subseteq A$.

The Subadditivity Cone is the set

 $C(A) = \{(\pi(g); g \in A_+) : \pi \text{ is a subadditivity function } \}$

We denote the linearity of C(A) by L(A), $\pi(\{g\})$ by $\pi(g)$ and (L, E) as a base of C(A) (see [6]).

4 Duality

Consider the following linear programming problem

$$\min \widetilde{c}x \tag{1}$$

s.t:
$$\widetilde{A}x = \widetilde{b}$$
 (2)

$$\widetilde{E}x \ge \widetilde{h} \tag{3}$$

$$x \ge 0 \tag{4}$$

where x and c are an n vetor, \tilde{b} is an m vetor, \tilde{h} is an p vetor, A is an m by n matrix and E is a p by n matrix. Corresponding to this problem, called *primal problem*, consider the following linear problem

$$\max \widetilde{\pi b} + \widetilde{\mu} \widetilde{h} \tag{5}$$

s.t:
$$\tilde{\pi}\tilde{A} + \tilde{\mu}\tilde{E} \le \tilde{c}$$
 (6)

$$\widetilde{\pi}$$
 unrestricted, and $\widetilde{\mu} \ge 0$ (7)

where $\tilde{\pi}$ and $\tilde{\mu}$ are row vetor of size *m* and *p*, respectively. This problem is called the *dual problem* of the primal problem (1)-(4) (see 2.5 in [7]).

Now, for $(A, \widehat{+})$ be a b-complementary multisemigroup, let P(A, b) the convex hull of the set $\{t \in \mathbb{N}^{A_+} : b \in \widehat{\sum}_{g \in A_+} t(g)g\}$. We denote by P the following linear programming problem

$$\min \sum_{g \in A_+} c(g)t(g)$$

s.t: $t \in P(A, b)$

where $c(g) \in \mathsf{R}$ for all $g \in A_+$.

In ([6]) Araoz and Johnson show the following theorem:

Theorem 4.1 [2, Theorem 3.8] Let (L, E) be a base of C(A). The following system defined a P(A, b)

$$\sum_{g \in A_+} \rho(g)t(g) = \rho(b), \text{ for all } \rho \in L$$
(8)

$$\sum_{g \in A_+} \pi(g)t(g) \ge \pi(b), \text{ for all } \pi \in E$$
(9)

$$t(g) \ge 0, \text{ for all } g \in A_+.$$

$$(10)$$

In order to defined the dual problem of the problem ${\cal P}$ we shown the following theorem.

Theorem 4.2 The P problem is equivalent to the P_p problem

$$\min\sum_{g\in A_+} c(g)t(g) \tag{11}$$

$$\sum_{g \in A_+} \rho(g)t(g) = \rho(b), \quad \rho \in L;$$
(12)

$$\sum_{g \in A_+} \pi(g)t(g) \ge \pi(b), \quad \pi \in E;$$
(13)

$$t(g) \ge 0, \qquad g \in A_+,\tag{14}$$

where (L, E) is a base for C(A) and $c \in \mathbb{R}^{A_+}$

Proof. By theorem 4.1 the system (8)-(10) defined a P(A, b), then the problem P and P_p are equivalent.

Theorem 4.3 The dual problem of P_p is the problem P_d

$$max \sum_{\rho \in L} \rho(b)v(\rho) + \sum_{\pi \in E} \pi(b)w(\pi)$$
(15)

$$\sum_{\rho \in L} \rho(g)v(\rho) + \sum_{\pi \in E} \pi(g)w(\pi) \le c(g), \quad g \in A_+$$
(16)

$$v(\rho) \text{ unrestricted, } \rho \in L$$
 (17)

$$w(\pi) \ge 0, \pi \in E. \tag{18}$$

Proof. Since L and E are finite sets (see [6]), the system (12)-(14) is the form of the system (2)-(4) where $n = |A_+|$, m = |L|, p = |E|, $(\widetilde{A})_{\rho,g} = \rho(g)$ for $\rho \in L, g \in A_+$, $(\widetilde{E})_{\pi,g} = \pi(g)$ for $\rho \in E, g \in A_+$, $\widetilde{b} = (\rho(b) : \rho \in L), \widetilde{b} = (\pi(b) :$ $\pi \in E)$ and $\widetilde{c} = (c(g) : g \in A_+)$. Therefore the dual problem of P_p is the form by duality linear programming the proof is complete \diamondsuit

References

- Aráoz J. and Johnson E., "Polyhedra of Multivalued System Problems", Report No.82229-OR, Institut für Ökonometrie und Operations Research, Bonn, W. Germany (1982)
- [2] Aráoz J. and Johnson E.,"Morphic Liftings between of pairs of Integer Polyhedra", Research Report 89616OR, Int. Operations Research, Bonn 1989.
- [3] Gastou G., "On facets of integer Programming Polyhedra", Ph.D. Thesis, Administrative Science Dept, Yale University, New Haven, 1982.
- [4] Gomory R., "Some Polyhedra Related to Combinatorial Problems", Journal of Linear Algebra and Its Applications, 2(4),451-558 (1969).

- [5] Johnson E.L., "Facets, Subadditivity, and Duality for Group and Semi-group Problems", Society for Industrial and Applied Mathematics 19103, Philadelphia, USA 1980.
- [6] Rockafellar R. T., "Convex Analysis", Princenton Univerty Press, Princenton, New Jersey, U.S.A (1969)
- [7] Salkin H. and Mat., "Foundations of Integer Programming", Elsevier Science Publishing, North-Holland (1989)