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Abstract

In this work we present the primal and dual problem for a b-complementary
multisemigroup.

1 Introduction

In general, for the master additive system problem (see [1],[2]) there exits results
of lifting facets that can’t be used for non-master because when projecting
a facet of a master polyhedra onto a non-master polyhedra we don’t obtain
a facet of the non-master. In the case where the algebraic structure is an
abelian group, Gastou (see [3]) showed how to lift in a sequential way. This
way does not consider the dual problem of the problem associated in order to
caracterize the facets, this is a motive for the research. The main purpose of this
paper is to define the dual problem of a primal problem for a b-complementary
multisemigroup. We have extended the result in [5] the semigroup for the b-
complementary multisemigroup.

2 The b-complementary Multisemigroup.

An additive system (A,F) is defined to be a non-empty finite set A together
with addition F : 24 x 24 — 24 (24 = {H : H C A}) such that:

(1) {g}F{h} C A, for all g and h in A;
(2) STT = Usesier({s} +{t}), for all S, T C A.

In this work we use g4h in the place of {g}i{h}.A R
An identity is an element of A denoted 0 such that 0+¢ = g+0, forall g € A,
a infinity, 0o, is the element of A such that co+S = S+o00 = oo, for all S € 24.
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We assume that both identity and infinity, are unique if they exist.The set A,
of proper elements is the set A\ {0, 00}. In this work we denote N by the positive
integer set and R as the set of real numbers.

An additive system is associative if :

(S¥T)FU = SF(TFU)

for all S,T,U € 24. And, an additive system is abelian if S+T = T+S, for all
S, T € 24,

An expression of the additive system (A, +) is defined recursively as follows
(see [4]):

(i) (&) is an empty expression;
(ii) (g) is a primitive expression, for all g € A;
(i) E = (El—T—Ez) is an expression, for all expressions F; and Fs,

For E as (vi1) we call the expressions E7 and Fs the subexpression of E.
The evaluation v (see [4]) is the function of the expressions of (4, +) in the
24 defined recursively by

o If E = (&) then y(E) = {0};
o If E = (g) then v(E) = {g}, for all g € A4;
o If E = (F17E,) then v(E) = y(E1)Ty(Ey).

The incident vector of an expression E is the vector t = (¢(g); g € A ) such that
t(g) is the number of times that (g) appears as the primitive subexpression of
E. Now, let b be a fixed element in an additive system (A, F), the expression
E is a solution expression of b if b € y(E). And t € N4+ is a solution vector of
b if there are a solution expression E of b.

Let (A, F) be an abelian associativity additive system. Since (A, F) is asso-
ciative and abelian, for any positive integer k and any g € A, we can defined kg
by

k—times

—
kg =~(((9)+-+(9)))-

Now, since there are only a finite number of subsets of A in the sequence
of sets 0g, 1g,2g,...,kg,... there are sets which appear an infinite number of
times, such sets are called loop sets of g. The loop of ¢ is the union of all
the loop sets of g. Let s = mg be the first occurrence of any set appearing
for the second time in the sequence (kg | k > 0). Since s appears the second
time in the sequence, s = pg for some p < m, and the sequence of distinct sets
(kg | p <k <m—1)is the same as (kg | m <k <2m —p—1). In fact we have
(p+k+il)g=(p+kg) (where l=m —p) for 0 < k <1—1 and i > 0, since
(m + k)g = mg+kg = pg+kg = (p + k)g. The loop order of g is defined to be
this [. Clearly h € A is in loop of g if and only if there exists £ > 0 such that
h € (k+il)g for all i > 0, where [ is the loop order of g.
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Let (A,F) be an abelian associative additive system and b € A,. We say
that (A,F) is b — consistent, if and only if b € bTkg, for all g € A and for all
k € Z,, and that (A, ¥) is a multisemigroup if it’s g-consistent for all g € A.

Let (A, F) be an additive system and b € A, we define

b~g={r€A:bcatg}

These sets induce a partial order in A, we say g<h when b ~ g C b ~ h.
When the set b ~ g has a minimum element, this minimum element is called
b — complement of g. The and is denoted by g. A additive system A is called
b-complementary when every element has a b — complement. An element g € A
is infeasible whenever there is not solution of the equation b € g+z, that is ,
b~ g=10. We can assume, without loss of generality, that the additive system
has at most one infeasible element denoted by oc.

3 The Optimization Problem.

Given a finite b-complementary multisemigroup A and a subset M of A, the
b-complementary multisemigroup problem defined as

where ¢(g) € R for all g € M.
The function 7 : A — R has subadditivity (see [2]) if it satisfies:

(i) () = —oc;
(il) 7(G) = max{m(g) : g € G} for all G C A4;
(iii) =({0}) =0;
(iv) 7(G) +n(H) > n(G¥H) for all G, H C A.
The Subadditivity Cone is the set
C(A) ={(n(g);g € A}) : 7 is a subadditivity function }

We denote the linearity of C(A) by L(A), m({g}) by 7(g) and (L, E) as a base
of C(A) (see [6]).
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4 Duality
Consider the following linear programming problem
min ¢z (1)
st: Az =1b (2)
Ex>h (3)
x>0 (4)

where x and c are an n vetor, bis an m vetor, h is an p vetor, A is an m by n
matrix and E is a p by n matrix. Corresponding to this problem, called primal
problem, consider the following linear problem

max 7b + ﬁ% (5)
st TA+uE <¢ (6)
7 unrestricted, and 1z > 0 (7)

where 7 and g are row vetor of size m and p, respectively. This problem is
called the dual problem of the primal problem (1)-(4) (see 2.5 in [7]).
Now, for (A, F) be a b-complementary multisemigroup, let P(A,b) the con-

vex hull of the set {t € N4+ : b€ igeAth(g)g}. We denote by P the following
linear programming problem

s.t: t € P(A,b)

where ¢(g) e Rforall g € A,.
In ([6]) Araoz and Johnson show the following theorem:

Theorem 4.1 [2, Theorem 3.8] Let (L, E) be a base of C(A). The following
system defined a P(A,b)

> pg)tlg) = p(b), for all pe L (8)
geEAL
> wlg)t(g) > w(b), forallm € E (9)
geAL
t(g) >0, forallge AL (10)

In order to defined the dual problem of the problem P we shown the following
theorem.
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Theorem 4.2 The P problem is equivalent to the P, problem

min Y ¢(9)t(g) (11)
geAL
> plg)t(g) = p(b), peL; (12)
geEAL
> wlg)tlg) = w(b), 7€ E; (13)
geAL
t(g) Z 07 g € A+5 (14)

where (L, E) is a base for C(A) and c € R4+

Proof. By theorem 4.1 the system (8)-(10) defined a P(A,b), then the problem
P and P, are equivalent.<$

Theorem 4.3 The dual problem of P, is the problem Py

maz 3 p(b)e(p) + 3 w(b)uw(r) (15)
peL TeE
> p(g)o(p) + > wlgw(r) < clg), g€ Ay (16)
peL TeEE
v(p) unrestricted, p € L (17)
w(r) > 0,7 € E. (18)

Proof. Since L and E are finite sets (see [6]), the system (12)-(14) is the form

of the system (2)-(4) where n = |Ay|, m = |L|, p = |E|, (4),4 = p(g) for
pELgeAL (E)rg=m(g)forpeE,ge Ay, b= (pb):pé€L)h=(r):
m € E)and ¢ = (c(g) : g € Ay). Therefore the dual problem of P, is the form

by duality linear programming the proof is complete
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