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Coordenação de Matemática Aplicada e Computacional,
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Abstract: Hyperthermia therapy is a medical treatment in which body tissue is exposed to sligh-
tly higher temperatures to damage and kill cancer cells or to make cancer cells more sensitive
to the effects of radiation and certain anti-cancer drugs. To selectively heat the cancer region,
antennas are positioned around of patient, emitting electromagnetic waves. One of the challen-
ges in thermal therapy is delivering the appropriate amount of heat to the correct part of the
patient’s body. In this work, we develop a new optimization method, using topological derivative,
which finds the best distribution of heat sources generated by antennas aiming at increasing the
temperature in the region of the tumor. Numerical results are presented illustrating possible ap-
plication of the proposed methodology.
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1 Topological derivative concept

The topological derivative measures the sensitivity of a given shape functional with respect to
an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-
terms or even cracks. More precisely, the basic idea is to introduce a singular perturbation in
the domain Ω confined in a small ball Bε(x̂) of size ε and center at x̂ ∈ Ω, as shown in fig. 1,
here x̂ is an arbitrary point of Ω and ω is a fixed bounded domain of Rd. One can introduce
a characteristic function associated to the unperturbed domain, χ = 1Ω. Then, we define a
characteristic function associated to the topologically perturbed domain of the form χε. In this
work, χε(x̂) = 1Ω − (1− γ)1

Bε(x̂)
, where γ ∈ R. Thus, a piecewise constant function γε can be

defined as

γε = γε(x) :=

{
1 ifx ∈ ΩrBε,
γ ifx ∈ Bε.

(1)

Then, assume that a given shape functional ψ(χε(x̂)), associated to the topologically perturbed
domain, admits the following topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + ρ(ε)DTψ(x̂) + o(ρ(ε)) , (2)

where ψ(χ) is the shape functional associated to the original (unperturbed) domain, ρ(ε) is a
positive function such that ρ(ε) → 0, when ε → 0. The function x̂ 7→ DTψ(x̂) is called the
topological derivative of ψ at x̂. Therefore, this derivative can be seen as a first order correction
of ψ(χ) to approximate ψ(χε(x̂)).

We adopt the methodology developed in [1], which is given by the following result [2]:

Theorem 1. Let ψ(χε(x̂)) be a shape functional associated to the topologically perturbed domain,
which admits, for to ε sufficiently small, the topological asymptotic expansion given by (2).
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Furthermore, it is assumed that the remainder R(ρ(ε)) = o(ρ(ε)) has the following additional
property R′(ρ(ε))→ 0, when ε→ 0. Therefore, the topological derivative can be written as

DTψ(x̂) = lim
ε→0

1

ρ′(ε)

d

dε
ψ(χε(x̂)) , (3)

where d
dεψ(χε(x̂)) is the derivative of ψ(χε(x̂)) with respect to the small parameter ε.

Figura 1: The topological derivative concept.

2 Model problem

Let Ω ⊂ Rd (d ≥ 2) be an open and bounded domain with a Lipschitz continuous boundary
∂Ω. Let B be a subset of Ω (B ⊂ Ω) with ∂B used to denote the boundary of B, as shown in
figure 2. Our goal is to maximized the temperature in the cancer domain D ⊂ B, by keeping
the temperature in the healthy region B rD.

Figura 2: Generic representation of the domain Ω, where ω are antennas that emit electromag-
netic waves in all domain Ω passing through the healthy body B such that the diseased tissue
(cancer) D is heated.

2.1 Unperturbed problem

According to the subject matter hereof, the following shape functional is adopted

ψ(χ) := J (θ) = − w

|D|

∫
D
θ +

1− w
|B|

∫
B�D

θ, (4)

where 0 < w < 1 and θ is the temperature distribution, solution to the following problem

Pθ :

 Find θ ∈ H1
0 (Ω), such that∫

Ω
(α∇θ · ∇η + βθη) =

∫
Ω

σ|u|2

2
η, ∀η ∈ H1

0 (Ω),
(5)
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where |u|2 = uu, with u denotes the complex conjugate of u.
In addition u is solution to the following time-harmonic wave problem in weak form

Pu :

 Find u ∈ H1(Ω), such that∫
Ω

(
∇u · ∇η − k2uη

)
+ ik

∫
∂Ω
uη =

∫
Ω
fη +

∫
∂Ω
rη, ∀η ∈ H1(Ω)

(6)

We define the complex Hilbert space L2(Ω) := {v : Ω → C,
∫

Ω |v|
2 dΩ < ∞} of square-

integrable functions, equipped with the inner product (v, w) =
∫

Ω vw dΩ, and the norm ‖
v ‖L2(Ω)= (v, v)1/2. And define the subspace H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)} where
∇v are the weak derivatives of the function v. The inner product (v, w)1 =

∫
Ω∇v · ∇w dΩ

induces the norm ‖ v ‖H1(Ω)= (v, v)
1/2
1 .

For the classical Hilbert space we define L2(Ω) := {v : Ω → R,
∫

Ω |v|
2 dΩ < ∞} of

square-integrable functions, equipped with the classical inner product. And define the subs-
pace H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)}, where ∇v are the weak derivatives of the function
v.

The problem presented in (6) is the wead form at Helmholtz problem with Robin boundary
condition. Problem (5) is the weak form of a steady-state heat transfer problem with homoge-
neous Dirichlet boundary condition. By solving the Helmholtz problem (6), we obtain the
solution u to be replaced in (5), thus we find the temperature θ of the body B due to the
antenna ω, which radiates electromagnetic waves. Rewriting the problems given by (5) and (6),
in theirs strong forms, we obtain the following semi-coupled system of PDE.

HP


−∆u− k2u = f, in Ω,

−div(α∇θ) + βθ = σ|u|2
2 , in Ω,

∂u
∂n + iku = r, on ∂Ω,

θ = 0, on ∂Ω,

(7)

where i =
√
−1, k ∈ R is the wavenumber, σ is the electrical conductivity of biological material,

r ∈ H−
1
2 (∂Ω), α, β ∈ R+ and f ∈ L2(Ω) source term described as:

f =

{
1, in ω
0, in Ωr ω, (8)

where ω ⊂ Ωr B are antennas that emit electromagnetic waves. In addition

α =


α1, in B rD,
α2, in D,
α0, in Ωr B,

(9)

β =


β1, in B rD,
β2, in D,
β0, in Ωr B,

(10)

with B the healthy body and D the cancer (figure 2).
To simplify our analysis, two adjoint problems are introduced. The first one is associated

with the semi-coupled heat problem (5), that is

 Find ϕ ∈ H1
0 (Ω), such that∫

Ω
(α∇ϕ · ∇η + βϕη) = − w

|D|

∫
D
η +

1− w
|B|

∫
B�D

η, ∀η ∈ H1
0 (Ω).

(11)
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The other one is associated with the Helmholtz problem (6), namely

 Find v ∈ H1(Ω), such that∫
Ω

(∇v · ∇η − k2vη) + ik

∫
∂Ω
vη =

∫
Ω
σuϕη, ∀η ∈ H1(Ω).

(12)

Note that the problem (12) depends on the solutions to (6) and (11), while the problem (11)
is independent of the others problems due to the choice of the shape function (4)

2.2 Perturbed problem

The aim of our work is to use the topological derivative to find the best design of the antenna
that radiates electromagnetic waves in order to maximize the temperature in the region D ⊂ B
where the cancer is located. Then consider the perturbed shape functional

ψ(χε) := J (θε) = − w

|D|

∫
D
θε +

1− w
|B|

∫
B�D

θε, (13)

where 0 < w < 1 and θε is the temperature distribution, solution of the (14).


Find θε ∈ H1

0 (Ω), such that∫
Ω

(α∇θε · ∇η + βθεη) =

∫
Ω

σ|uε|2

2
η, ∀η ∈ H1

0 (Ω).
(14)

In addition uε is solution of (15).

 Find uε ∈ H1(Ω), such that∫
Ω

(
∇uε · ∇η − k2uεη

)
+ ik

∫
∂Ω
uεη =

∫
Ω
fεη +

∫
∂Ω
rη, ∀η ∈ H1(Ω).

(15)

From (14) and (15), we write the perturbed hyperthermia problem, in strong form, as

HPP


−∆uε − k2uε = fε, in Ω,

−div(α∇θε) + βθε =
σ|uε|2

2 , in Ω,
∂uε
∂n + uε = r, on ∂Ω,

θε = 0, on ∂Ω,

(16)

where r is the prescribed source term on ∂Ω and fε the perturbed source term described as:

fε(x) =

{
γ(x), x ∈ ωε(x̂),

0, x /∈ ωε(x̂),
(17)

ωε(x̂) =

{
ω rBε(x̂), x̂ ∈ ω,
ω ∪Bε(x̂), x̂ /∈ ω, (18)

where ωε ⊂ Ωr B is the ball of radius ε and γ is given by:

γ(x) =

{
1, if x /∈ ω,
−1, if x ∈ ω. (19)

Similarly to the problems (6) and (5), we introduce the adjoint-state associated to the per-
turbed problem (15): Find vε ∈ H1(Ω), such that∫

Ω
(∇vε · ∇η − k2vεη) + ik

∫
∂Ω
vεη =

∫
Ω
σuεϕη, ∀η ∈ H1(Ω).

(20)
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2.3 Stability conditions

The following lemmas, which will not be proved here, express the stability of the perturbed
problem defined by HPP.

Lemma 2. Let be ũε = uε − u, where u and uε are solutions of the Eq. (6) and Eq. (15),
respectively. Then, we have the following estimate ‖ ũε ‖H1(Ω)≤ Cε, where C is a constant
independent of the parameter ε.

Lemma 3. Let be θ̃ε = θε − θ, where θ and θε are solutions of the Eq. (5) and Eq. (14),
respectively. Then, we have the following estimate ‖ θ̃ε ‖H1(Ω)≤ Cε, where C is a constant
independent of the parameter ε.

Lemma 4. Let be ṽε = vε − v, where v and vε are solutions of the Eq. (12) and Eq. (20),
respectively. Then, we have the following estimate ‖ ṽε ‖H1(Ω)≤ Cε, where C is a constant
independent of the parameter ε.

3 Calculation of topological derivative

In this section we present the calculation for the topological derivative. As shown in Section
1, the topological sensitivity analysis provides asymptotic development (2) for a given shape
functional, called topological derivative (3), which measures the sensitivity of this functional
when an infinitesimal singular perturbation is introduced at an arbitrary point of the domain
[2]. Thus, after deriving the functional (13) with respect to the small parameter ε we have

ψ̇(χε) = − w

|D|

∫
D
θ̇ε +

1− w
|B|

∫
B�D

θ̇ε, (21)

In the perturbed heat problem given by (14), we derive with respect the ε that∫
Ω

(α∇θ̇ε · ∇η + βθ̇εη) = <
(∫

Ω
σuεu̇εη

)
, ∀η ∈ H1

0 (Ω). (22)

The same we do with the Helmholtz perturbed problem (15)∫
Ω

(∇u̇ε · ∇η − k2u̇εη) + ik

∫
∂Ω
u̇εη = γ

∫
∂Bε

η, ∀η ∈ H1(Ω). (23)

In the adjoint heat problem given by (11), we set η = θ̇ε, then∫
Ω

(α∇ϕ · ∇θ̇ε + βϕθ̇ε) = − w

|D|

∫
D
θ̇ε +

1− w
|B|

∫
B�D

θ̇ε. (24)

In the (22) we chose η = ϕ, thus∫
Ω

(α∇θ̇ε · ∇ϕ+ βθ̇εϕ) = <
(∫

Ω
σuεu̇εϕ

)
, (25)

where <(u) denotes the real part of u.
The new relation of the shape functional is given through the (24) and (25)

ψ̇(χε) = <
(∫

Ω
σuεu̇εϕ

)
. (26)

Now, in the adjoint Helmholtz problem (20)) we set η = u̇ε, thus, after lacking the real part of
the obtained results, we have

<
(∫

Ω
(∇vε · ∇u̇ε − k2vεu̇ε) + ik

∫
∂Ω
vεu̇

)
= <

(∫
Ω
σuεϕu̇ε

)
. (27)
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In equation (23) we have η = vε, yielding, after taking the real part of the obtained results

<
(∫

Ω
(∇u̇ε · ∇vε − k2u̇εvε) + ik

∫
∂Ω
u̇vε

)
= γ<

(∫
∂Bε

vε

)
. (28)

Using the relation of the functional form (27) with the variational problem given by (28)
and expanding in powers of ε, we obtain

ψ̇(χε) = 2πεγ< (v(x̂)) + o(ε), (29)

where we have used Lemma 4 together with the interior elliptic regularity of function v. Observe
that by expanding the (29) in powers of ε, we obtain the following result

Theorem 5. The topological derivative of the shape function (4) is given by

DTψ(x̂) = γ< (v(x̂)) =

{
< (v(x̂)) , if x̂ /∈ ω,
−< (v(x̂)) , if x̂ ∈ ω. (30)

Result of some numerical experiments are presented next.

4 Numerical results

To illustrate the use of the proposed optimization method numerical experiments are solved in
domain, shown in figure 3. The domain is defined in a quadrangular geometry Ω = (−1, 1) ×
(−1, 1), the healthy body B on a circle of radius ρB = 0.2, the diseased region of body D is also
circular with radius radius ρD = 0.04 and the antennas ω will be positioned over an annular
region, with radius varying from 0.3 to 0.6, i.e., 0.3 ≤ ρω ≤ 0.6.

Figura 3: Domain of the experiments

In order to obtain a satisfactory solution of the problems (6) and (15) we need a mesh with
elements of size h, which satisfy the following condition: k2h < 1, where k is the wavenumber.
Then, we used the classical Galerkin finite element method and uniform mesh with 106 of linear
triangular elements.

4.1 Experiment - Choice of the wavenumber k and initial guess of the ω

As initial experiment we positioned the target (D) at the center o f t he body. The figure 4
(left), show the initial configuration of the ω and the distribution of heat on B. The figure 4
(right), show the final configuration of the ω and the distribution of heat on B.

In the following experiment we change the position of the target D at coordinates (0.1, 0.1), as
shown in figure 5. In left, show the initial configuration and in right, show the final configuration.

In figure 6 we show the decay of the cost function at each iteration. The optimal solution is
found with only 11 iterations using a fixed point method.
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Figura 4: Experiment with the target at coordinates (0.0, 0.0) and k = 20. configuration.

Figura 5: Experiment with the target at coordinates (0.1, 0.1) and k = 20.
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Figura 6: Evolution of the objective function in experiment with the target at coordinates
(0.1, 0.1) and k = 20.

5 Conclusions

We propose a new optimization method for the hyperthermia problem using topological deriva-
tives. The preliminary work shows very promising results on heating selectively the region of
the target.
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