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Instituto Politécnico, UERJ - Universidade do Estado do Rio de Janeiro

28601-970 Nova Friburgo, RJ, Brasil

dcamara@iprj.uerj.br, ajsneto@iprj.uerj.br, E-mail:coliveira@.uerj.br

Abstract: In this paper, a statistical approach for the analysis of the propagation of uncer-

tainty is shown, in the estimate of the kinetic parameters of mass transference used to model a

chromatographic column in Simulated Moving Bed. The modeling of the chromatography column

was accomplished intervening the new approach front velocity. The analysis of how it is prop-

agated the operational factors uncertainty involved in the process of chromatography toward the

estimated parameters was carried out by the use of response surface methodology. Furthermore,

chromatographic regions where factors cause bigger variation in the output and their respective

patterns were determined. The analysis was applied to the separation process of glucose and

fructose.

Keywords: uncertainty propagation, parameter estimation, response surface, chromatographic

column, front velocity, factorial experimental design

Introduction

The characterization of a chromatographic column is an important factor in determining the
properties of mass transport, which are used in the design of industrial units such as the process
Simulated Moving Bed (SMB). Modeling and simulation of chromatographic systems leads to
an understanding of the main mechanisms of mass transfer, and the operating conditions that
can be used to improve the separation/purification of the molecules.

The application of inverse problems methodology to chromatography has proven to be impor-
tant in the optimization studies as well as in the determination of mass transfer parameters with
higher accuracy as attested by several research involving the study and analysis of adsorption
chromatographic systems [4, 10].

The uncertainty of a measurement or estimate is defined as “a parameter, which is associated
with the result of a measurement or estimation and characterizes the dispersion of values”. The
result of a measurement or estimation is considered the best estimate of the true value, and all
sources of uncertainty influence in its propagation. Therefore, the result can’t be interpreted
properly without any knowledge about its uncertainty. The quantification of uncertainty will
allow to establish the confidence intervals for the estimated parameters, which can be very
important from an engineering point of view.

The objective of this work is to analyze how the uncertainty in the values of some vari-
ables that are involved in the characterization of a chromatographic column, propagates in the
estimation of kinetic parameters of the model front velocity. For this purpose, an alternative
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procedure to the the use of the Monte Carlo method [7, 5] is applied, based on the use of response
surface [9] for obtaining the probability distribution function (pdf) of the estimated parameters.
This proposal has the advantage, over the Monte Carlo method, that require shorter compute
time and to offer direct interpretation of how acting factors uncertainty has influence over the
variation of the estimated parameters.

1 Front velocity modelling approach of chromatography

The chromatographic column model determines the performance in the final separation of the
SMB, depending on the number of interconnected columns. In general, different research groups
employ dispersion models [6] to represent the chromatographic columns. These models are
robust and efficient, but need deep numerical treatment of the partial differential equations
which requires high computational time.

In this work it is used a new modeling approach, known as the front velocity convection
[2, 3]. In this approach, the convection of the liquid phase is regarded as the main phenomenon
in the transport of molecules along the chromatographic column, followed by the mass transfer
between the solid adsorbent and the liquid phase.

1.1 Front velocity

Due to the fact that the flow rate driven into the column is determined by an external pumping
system, the time that the liquid phase needs to go over the length of the chromatographic
column can be determined if the volumetric flow rate, the porosity, and the column volume are
known experimentally. To model the mass transfer, two transfer models of concentrated mass
are assumed, described by the Equations (1) and (2), where C, q, k1 and k2 are respectively,
the concentration in the liquid and solid phases, the maximum capacity of adsorption and the
global mass transfer kinetic constants of adsorption and desorption.

dC

dt
= −k1C + k2q (1)

dq

dt
= −

dC

dt
(2)

The simulation from the front velocity modeling approach was compared to the experimental
data available in [1]. Figure 1 shows a comparison between the experimental results and the data
obtained by simulation, for which the following parameters were used: flow-rate = 30ml/min,
porosity = 0.4, injec-vol. = 300ml, and injec-conc. = 15mg/ml.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Time [min]

C
on

c 
[m

g/
m

l]

 

 
Exp. Glucose
Simulation
Exp. Fructose
Simulation

Figure 1: Comparison between simulation results (lines) and experimental adsorption data
(points) of glucose and fructose.
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1.2 Parameter estimation

In order to estimate the unknown parameters of the model, the inverse problem is formulated
implicitly like an optimization problem, where it is wanted to minimize the squared function of
the residuals

S( ~K) =
[

~Cexp − ~Ccal( ~K)
]

′
[

~Cexp − ~Ccal( ~K)
]

= ~R′ ~R (3)

where ~Cexp is the vector of experimental solute concentration values, ~Ccal is the vector of calcu-

lated values, ~K = (k1, k2)
′ is the vector of unknown parameters to be determined, and ~R is the

vector of residues .
The optimization method used to solve the inverse problem was Simulated Annealing [12].

To avoid a great delay in the estimation of the parameters, an iterative approach was used, in
which the algorithm is configured to perform just a few cycles and then restart with the result
as an initial condition.

2 Uncertainty propagation in a chromatographic column

2.1 Uncertainty assessment by means of simulation

The analysis of uncertainty propagation by an analytical method may involve a complicated
mathematical manipulation, for which an analytical solution is possible only through approxi-
mations. A method that avoids the algebra and calculus, is to use numerical simulation tech-
niques, for which only the system or process model and knowledge of the distribution or range
of uncertainties are required. With this approach, given the values of the input variables, the
outputs are calculated repeatedly with small changes in the inputs. After sufficient replicates,
the distributions of the outputs take the correct form, from which it can determine the mean
and standard deviation, e.g. In the design of the simulations it must be taken into account all
possible factors of variation.

The input variables that were considered in this work are: flow-rate, porosity, injection
volume, and injection concentration; which have also been considered in other papers [8]. For
each variable variations up to 10% were defined, as shown in [8].

2.2 Response Surface Methodology

As mentioned previously, a widely used method for this type of analysis is the Monte Carlo
method. However, for the process under study, this approach is not recommended due to the
required number of executions of the parameter estimation method to obtain their pdf. In this
work it is used the response surface methodology approach, consisting in a group of mathematical
and statistics techniques used to develop a relational function between an answer of concern, y,
and a number of associated control (or input) variables denoted by x1, x2, . . . , xk [9]. In general,
such a relationship is unknown but can be approximated by a low-degree polynomial model of
the form

y = f ′(x)β + ǫ (4)

where x = (x1, x2, . . . , xk), f(x) is a vector function of p elements that consist of powers and
cross- products of powers of x1, x2, . . . , xk up to a certain degree denoted by d(≥ 1), f ′ means
transpose function, β is a vector of p unknown constant coefficients, and ǫ is a random experi-
mental error assumed to have a zero mean. The quantity f ′(x)β represent the mean response
(expected value of y), denoted by µ(x).

In general, two basic models are used [9], which are special cases of Equation (4): the
first-degree model (d = 1)

y = β0 +
k

∑

i=1

βixi +
∑∑

i<j

βijxixj + ǫ, (5)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0333 010333-3 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0333


and the second-degree model (d = 2)

y = β0 +

k
∑

i=1

βixi +
∑∑

i<j

βijxixj +

k
∑

i=1

βix
2

i + ǫ. (6)

In general, at any point, x, in a experimental region, denoted by R, the predicted response
is ŷ(x) = f ′(x)β̂, x ∈ R.

2.3 Factorial design

Obtaining the response surface involves the study of the effect of two or more variables, called
factors in this context. In general, the factorial design, used as an approach to obtain the
response surface design, is the most efficient for this goal.

The factorial design have several advantages: 1) it allows to analyze the effect of each factor
individually and the interaction among them; 2) it allows the effects of a factor to be estimated at
several levels of the other factors, yielding conclusions that are valid over a range of experimental
conditions; and 3) need less experiment runs [11].

3 Outcomes and discussion

To illustrate the uncertainty propagation analysis, the mass transfer kinetic parameters estima-
tion problem in a chromatographic column through front velocity is used. Table 1 shows the
values of the variables selected for the analysis and a 10% of deviations from the respective
nominal experimentation values.

Variable Rang Eng Unit
Flow-rate (A) 27-33 ml/min
Porosity (B) 0.36-0.44
Injection vol. (C) 270-330 ml
Injection conc. (D) 13.5-16.5 mg/ml

Table 1: Operational factors for the uncertainty analysis in model parameter estimation.

Figure 2 shows how the flow-rate variation in the process output influences. The plots in 2a
are obtained solving the direct problem for the flow-rate values used in the factorial design, and
show the different concentration profiles over the time obtained. The absolute value concerning
the difference among the profiles obtained for the maximum and minimum values, denoted by δ,
represents the output uncertainty region generated by the flow-rate variation. These uncertainty
regions are shown in the graphs in 2b.
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(b) Output uncertainty region.

Figure 2: Flow-rate variations influence.
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Figure 3 shows the output uncertainty regions generated by the variation at the remainders
factors of concern. As can be seen, the concentration uncertainty is variable over the time, and
the dispersion due to each factor causes a different uncertainty pattern. This characterization
of the uncertainty allows to offer a support to the experimenters, of which are the regions of
greater variation caused by changes in the factors involved in the chromatography.
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(a) Uncertainty due to the porosity.
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(b) Uncertainty due to the volume.
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Figure 3: Output uncertainty region generated by the variation at the other factors.

3.1 Estimation of the confidence interval

For the response surface design in this work it will be used the 2k factorial analysis. This design
leads to the fact that the β̂ elements are uncorrelated, and their variance have minimum values.
This means that the design provides maximum precision for estimating the unknown parameters
in model Equation (5). For each of the experiments indicated by the analyzes two replicas were
carried out.

To determine the influence of the factors in the estimation of kinetic mass transfer param-
eters, an analysis of variance (ANOVA) is performed. The F statistic indicates that most of
the factors and their combinations have a significant effect on the k1 estimation. However, this
test is sensitive to the number of replicates carried out for each experiment, since the degrees
of freedom of the statistical test depend on the number of replicates performed. This implies
that results that are identified as significant for a number of replicas, may not be for a different
number of these. Therefore, the percent of contribution to the behavior of the studied variable is
taken as a selection criteria to be included in the response surface generator polynomial. Which
presents no major changes when varying the number of experiment replicates.

To select the factors that will be used in the polynomial generator, to incorporate those who
contribute more than 2% the behavioral output is taken as a criterion.

For the glucose, the factors incorporated to the polynomial generator determine the 96.92%
of the k1 parameter variation. Once selected the factors of greater effect, it is proceeded to
construct the multiple regression model that relates these factors with the results of the k1
estimation. The regression coefficients of the model are obtained applying the Least Squares
method, involving each k1 estimated value with the respective values of the factors used in the
direct problem solution. The polynomial generator obtained was

k̂1 = (18.16 − 1.27A + 2.08C + 3.59D) · 10−3 min−1 (7)

The influence of factors of concern on the k1 estimate variations is more homogeneous in
the case of the fructose. This homogeneity implies that it is necessary to incorporate a larger
amount of these to the response surface polynomial generator. For this case, it is necessary to
incorporate the effect of the four main factors and the combined effect (AB), to explain the

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 1, 2015.

DOI: 10.5540/03.2015.003.01.0333 010333-5 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.01.0333


96.97% of the variation in k1. The polynomial generator obtained is:

k̂1 = (13.23 − 1.45A − 0.71B + 1.59C + 1.23D + · · ·

0.41AB) · 10−3 min−1 (8)

Following the same procedure for k2, the polynomial generator obtained for glucose and
fructose are, respectively:

k̂2 = (30.13 − 2.03A + 2.41C + · · ·

6.19D) · 10−3 min−1 (9)

k̂2 = (11.17 − 1.20A − 0.51B + 1.22C + 1.15D + · · ·

0.31AB) · 10−3 min−1 (10)

which explain the 97.35% and 97.13% of the k2 variations.
For all cases, the indicated statistical test to determine the existence of quadratic curvature

on the response surface was carried out, obtaining as result that there is no evidence of quadratic
effects; therefore, it can be concluded that a first-degree surface is appropriate.

After obtaining the polynomials generators that describe the estimated parameters behavior
to variations in the factors of concern, random values within the defined range for each factor
are assigned and the pdf for each one of the mass transfer kinetic parameters is esteemed.

Table 2 shows the pdf that characterize the variability of the estimated parameters of the
kinetic model. The specified parameter intervals correspond to a 95% confidence.

Substance Param PDF Interval

Glucose
k1 N (0.0183, 0.588 · 10−5) [18.298, 18.321] · 10−3

k2 N (0.0304, 1.494 · 10−5) [30.345, 30.403] · 10−3

Fructose
k1 N (0.0133, 0.249 · 10−5) [13.250, 13.259] · 10−3

k2 N (0.0112, 1696 · 10−5) [11.187, 11.194] · 10−3

Table 2: Estimated distributions for the kinetic parameters.

Figure 4 shown the join probability distribution obtained for the k1 and k2 model parameters.
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Figure 4: Join probability distribution for the kinetic parameters estimation.

Conclusions

In this paper an analysis of how the uncertainty of the continuous chromatography operational
factor values influences in the mass transfer kinetic parameter estimation, used for the charac-
terization of a chromatographic column modeled on simulated moving bed, is presented.
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It was demonstrated how the use of factorial analysis for the construction of the response
surface allowed, in a direct way, to establish which are the operational factors of greater influence
in the estimated parameters. In addition, regions of the chromatograms where these factors
cause the greatest variation were determined. Verifying that each factor creates a region with a
different pattern in the output dispersion, which provides a support to the experimenters of which
ones are the regions of greater variation. It also showed that the variations are mostly determined
by the main factors and that the combined effects of these have a very small contribution.
This characterization of the factor’s contribution allows to identify the uncertainty sources with
the highest incidence, and therefore the ones in which we have to assure bigger exactness for
experimentation.

By using the response surface, the probability densities that describe the intervals in which
the esteemed parameters can be found were obtained, from defining the range of values that the
sources of uncertainty can take. All of this without requiring the execution of a large number
of experiments.
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