Formação do Mecanismo de Reduzido da Combustão para Fluxos Reagentes

A. Patricia Spilimbergo

Depto de Ciências de Exatas e Engenharias, DCEEng, UNIJUÍ 98700-000, Ijuí, RSP E-mail: patspi@unijui.edu.br

Viktor G. Krioukov Vladimir M. Tregubov

Department of Engines e Department of Applied Mathematics, Kazan State Technical University -

KSTU

Karl Marx Street, 10, PoB 420111, Kazan, Tatarstan, Russia E-mails: vkrujkov@kai.ru e vmt@pk.kstu-kai.ru

Resumo: Um problema novo da modelagem dos fluxos reagentes multidimensionais é a redução dos mecanismos de combustão. Neste trabalho é proposta uma nova técnica de redução composta de três etapas. Na primeira, usando o método do engajamento, é formado um mecanismo reduzido (mas excedente). Na segunda etapa são analisadas as substâncias e aquelas, que não influem nas características são excluídas (juntamente com as respectivas reações). Na etapa final são analisadas as reações e as insignificantes também são retiradas do mecanismo. Este algoritmo foi aplicado ao sistema reagente "CH₄ + Ar" para a área de alteração dos parâmetros: T = 1600 - 2700 K, P = 1 atm, coeficiente do excesso de oxidante $\alpha_{ox} = 1, 0 - 1, 4$ e com mecanismo completo inicialmente constituído por 131 reações. Após o tratamento, o mecanismo reduzido ficou constituído por apenas 13 reações com uma precisão admissível, pois os resultados dos cálculos corresponderam aos mesmos resultados referentes ao mecanismo completo na área prescrita.

1. Introdução

Os processos de combustão são mais corretamente descritos por mecanismos detalhados de reações, mas eles contêm dezenas de espécies e centenas de reações [2]. A introdução direta destes mecanismos, em problemas bi ou tridimensionais, conduz a gigantescos volumes computacionais. Assim, nos últimos anos foram desenvolvidas diferentes abordagens para reduzir os mecanismos de reações, levando em conta que a maioria das reações e espécies apresenta pouca influência nos processos de combustão e podem não ser consideradas. Estas abordagens foram publicadas em numerosos trabalhos e entre eles destaca-se:

- o método de análise de velocidades [5];

- o método PCA "Principal Component Analyses" [8];
- o "Intrinsic low-dimensional manifold method" [3];
- o "Direct path flux analysis method" PFA method [7];
- o "Principal component analysis of matrix F with simulation error minimization method" [4].

Pode-se assinalar as suas diversidades não apenas pelos algoritmos, mas também pelos esquemas básicos de combustão e até pela formulação do problema. Esta situação é provocada devido ao problema da redução e ao problema "inverso", e praticamente é impossível criar um único mecanismo reduzido ótimo para um meio reagente complexo. No presente trabalho é desenvolvida uma técnica de redução que inicialmente foi proposta em [6] e são apresentados os resultados da sua aplicação ao sistema: "CH₄ + Ar".

2. Formulação do Problema e Aspectos Matemáticos

Para desenvolver a técnica da redução foram consideradas as condições a seguir:

- inicialmente é determinado (encontrado) o mecanismo "completo" detalhado de reações (Cmecanismo) para o sistema reagente pesquisado e este mecanismo deverá ser reduzido; - é escolhido o conjunto das espécies prescritas, ou seja, reagentes e principais produtos de combustão das espécies de interesse para o pesquisador;

- são prescritos os indicadores da redução: o limiar para aplicar o método de engajamento (ζ_1), os limiares para excluir as espécies (ζ_2) e as reações (ζ_3);

- é determinada a área de aplicação do mecanismo reduzido (destinado a simular a combustão de fluxos multidimensionais), ou seja, os intervalos de alteração dos parâmetros: α_{ox} (coeficiente do excesso de oxidante), T_o (temperatura do meio reagente no equilíbrio químico, ou seja, a temperatura quando o tempo de residência $\tau_{tr} \rightarrow \infty$) e P (pressão). Esta área pode ser determinada de diferentes maneiras, por exemplo, por retângulos para α_{ox} e P;

- para cada ponto do espaço ($\alpha_{o\kappa}$, T_o , P) obtém-se o mecanismo local (L-mecanismo) e o mecanismo "global" (G-mecanismo) se formará pelo acoplamento dos diferentes mecanismos locais;

- cada L-mecanismo é formado pelo esquema do reator de mistura ideal (no regime estacionário).
 O modelo matemático deste reator é apresentado pelas equações:

- da cinética química na forma exponencial [6]:

$$\frac{d\gamma_{i}}{d\tau} = -e^{\gamma i} \left(\sum_{j} \nu_{ij} \Omega_{j} + \frac{r_{i}^{+} \mu_{\Sigma}}{\mu^{+} \tau_{tr}} \right) + \sum_{q} \sum_{j} \nu_{qj} \Omega_{j} + \sum_{q} \frac{r_{q}^{+} \mu_{\Sigma}}{\mu^{+} \tau_{tr}} \quad i, p, q = 1, \dots, n_{c} \text{ e } j = 1, \dots, 2m_{c} (1)$$

onde:

$$\Omega_{j} = k_{j} \left(\frac{P}{R_{o}T} \right)^{\overline{m}_{j}} \exp \left(-\sum_{p} n_{pj} \gamma_{p} \right); \quad \overline{m}_{j} = m_{j} + \sum n_{pj} - 1; \quad \gamma_{i} = -\ln r_{i}; \quad (2)$$

 ν_{is}^{\prime} , $\nu_{is}^{\prime\prime}$ - coeficientes estequiométricos no conjunto de reações reversíveis:

$$\sum_{i} v'_{is} B_{i} \Leftrightarrow \sum_{i} v''_{is} B_{i}; \quad s = 1,...,m_{c};$$
(4)

 $B_i - símbolo da i$ -ésima substância; $m_j -$ índice de participação na *j*-ésima reação da partícula catalítica M ($m_j = 1$ se a partícula M participa na *j*-ésima reação e $m_j = 0$ de maneira oposta); k_s^+ , k_s^- - constantes de velocidade da *s*-ésima reação e $k_s^- = k_s^+/K_s^e$; K_s^e - constante de equilíbrio da *s*-ésima reação; r_i , r_i^+ - frações molares da *i*-ésima espécie no reator e nos reagentes; n_c , m_c - número de espécies e reações no meio reagente; τ_{tr} - tempo de residência; $\mu_{\Sigma} = \sum r_i \mu_i$ - massa molecular média no reator; μ_i - massa molecular da *i*-ésima espécie; R_o - constante universal de gás e μ^+ - massa molecular média dos regentes.

$$\mathbf{h} = \mathbf{h}^{+} - \mathbf{Q} = \sum_{i} \mathbf{H}_{i} \mathbf{r}_{i} / \sum_{i} \mu_{i} \mathbf{r}_{i}$$
(5)

onde: h – entalpia específica mássica do meio reagente; H_i – entalpia molar da *i*-ésima espécie, h⁺ – entalpia específica mássica dos regentes e Q – perdas de calor no reator por unidade de massa.

As equações (1) e (5) são integradas em relação ao tempo até a obtenção do estado estacionário (mas quimicamente desequilibrado). Para isso aplica-se o método implícito com uso do jacobiano [6] até a obtenção do estado estacionário com valores r_i^f e T_f . No final resolve-se o sistema de equações algébricas, que se obtém se as derivadas nas Eqs. (1) são igualadas a zero:

$$\mathbf{F}_{\gamma i}\left(\mathbf{P},\mathbf{T}_{\mathrm{f}},\mathbf{k}_{\mathrm{s}}^{*}\right) = 0 \tag{6}$$

As equações (6) são resolvidas pelo método de Newton. Para a composição resultante serão formados L-mecanismos. Os fragmentos necessários na nova técnica de redução do C-mecanismo consiste nas resoluções das Eqs (6), quando as constantes k_s^+ são alteradas. Estes cálculos são executados também pelo método de Newton.

3. Algoritmo de Formação dos Mecanismos Reduzidos

Para formar um L-mecanismo é necessário escolher um ponto do espaço (α_{ox} , T_o , P, τ_{tr}). Os valores α_{ox} e P são escolhidos e os valores T_o são determinados no intervalo de temperatura [$T_o(max),...,T_o(min)$] se este for uniformemente dividido em trechos com passo ΔT . Os valores τ_{tr} são determinados de forma que o meio reagente permaneça próximo da linha de extinção (Fig.1), que separa a região de extinção (B) da região de combustão (A). A cada valor de T_o corresponde um valor de τ_{ex} , que se chama "tempo de extinção". A técnica da determinação do τ_{tr} é detalhadamente apresentada em [6].

Figura 1. Dependência de T_f em função do tempo de residência. (*ex* – linha de extinção; A – zona de combustão; B – zona de extinção; 3,5 - pontos de cálculo para os L–mecanismos).

O novo algoritmo de redução do C-mecanismo é constituído pelo método de engajamento e duas etapas suplementares para diminuir o número de espécies e reações.

a) Método de engajamento. Este método foi apresentado em [6]. Mas a experiência na aplicação apenas deste mostrou que para altos valores ζ_1 , no LE-mecanismo faltarão algumas espécies e reações importantes e que para baixos valores ζ_1 este mecanismo torna-se "redundante" ou seja ele considera espécies e reações insignificantes. Assim, no novo algoritmo são incluídas etapas adicionais, para contornar estes problemas.

b) Redução das espécies. Nesta etapa (análise do LE–mecanismo e exclusão das espécies insignificantes) é determinada a influência de cada *i*-ésima espécie. Se esta influência é pequena, a *i*-ésima substância e as reações correspondentes $R_s(i)$ são excluídas do LE–mecanismo. A influência é avaliada pelo decréscimo simultâneo em cada passo de todas constantes $k_s^+(i)$ e $k_s^-(i)$ das reações $R_s(i)$ através da relação:

$$\ln k_{s}^{+,m+1}(i) = \ln k_{s}^{+,m}(i) - \Delta_{m}$$
(7)

onde Δ_m é o passo do decréscimo e "m" o número de passos. O valor Δ_m inicialmente é pequeno e depois aumenta gradativamente. Se em algum passo ocorrer (8), é porque as constantes $k_s^+(i)$ pararam de diminuir e a substância permanece no mecanismo.

$$\delta_{qi} = \left| \frac{\gamma_q(LE) - \gamma_{qi}(\Delta_m)}{\gamma_q(C)} \right| \ge \zeta_2 \qquad q \in (\text{espécies prescritas})$$
(8)

onde: δ_{qi} – desvio relativo da *q*-ésima substância prescrita no andamento da análise da *i*- ésima espécie; $\gamma_q(C)$, $\gamma_{qi}(\Delta_m)$ – logaritmos das frações molares das espécies prescritas determinadas pelo C-mecanismo e no passo Δ_m e ζ_2 – limiar das espécies.

Se $\sum_{m} \Delta_m > 20$ (ou seja, quando as constantes $k_s^+(i)$ são reduzidas em e²⁰ vezes) e

continua a manter-se a relação $\delta_{qi} < \zeta_2$, a *i*-ésima substância e as reações $R_s(i)$ são excluídas do mecanismo. No resultado do LE-mecanismo obtém-se o LS-mecanismo, que pode ainda conter reações insignificantes. Assim, é executada a terceira etapa "Análise do LS-mecanismo e exclusão das reações insignificantes".

c) Redução das reações. Nesta etapa, a técnica de análise é a mesma da técnica da segunda etapa, mas a análise é executada para cada *j*-ésima reação. Os cálculos são realizados também para o estado estacionário do reator com decréscimo nos passo das constantes k_s^+ considerando o valor limiar ζ_3 . No resultado do LS-mecanismo obtém-se o LF-mecanismo.

4. Redução do C-Mecanismo para o Meio Reagente "CH₄ + Ar"

A nova técnica de redução foi aplicada ao mecanismo de combustão do metano em ar. O metano é utilizado na indústria (como combustível ou como matéria prima). Como C-mecanismo foi considerado um conjunto de 131 reações e 28 espécies apresentados em [1]. A espécie N₂ foi considerada inerte e foram escolhidas como espécies prescritas: CH₄, O₂, N₂, CO₂ e H₂O. A área de aplicação do GF-mecanismo foi determinada pelos parâmetros: $\alpha_{ox} = 1,00...1,42$; P=1atm e T_o = 2700K...1600K. Como limiares ζ_{1}, ζ_{2} e ζ_{3} , foram considerados os valores: $\zeta_{k} = 0,01$ ou $\zeta_{k} = 0,02$ (k = 1; 2; 3).

To	N _{R1}	N _{R2}	N _{R3}	δ_1	δ_2	δ_3	δ_{Σ}	B _i
2700	48	20	10	0,0026	0,017	0,039	0,059	H ₂ O
2600	48	20	11	0,0026	0,021	0,024	0,047	CO ₂
2500	50	21	11	0,0013	0,023	0,024	0,048	CO ₂
2400	50	21	11	0,0014	0,027	0,023	0,052	O ₂
2300	50	21	11	0,0015	0,030	0,024	0,055	O ₂
2200	49	20	11	0,0028	0,033	0,022	0,059	O ₂
2100	48	18	11	0,0054	0,035	0,020	0,061	O ₂
2000	49	19	11	0,0039	0,037	0,021	0,062	O_2
1900	47	19	11	0,0030	0,040	0,018	0,061	O ₂
1800	47	24	13	0,0021	0,005	0,007	0,014	O ₂

Tabela 1. Resultados de redução do C-mecanismo (meio "CH₄ + Ar", $\alpha_{ox} = 1$ e $\zeta_k = 0,02$).

Na Tabela 1 são mostrados os resultados dos cálculos da redução do C-mecanismo para $\alpha_{ox} = 1$ e $\zeta_k = 0,02$, onde N_{R1} – número de reações depois da redução na primeira etapa (LE-mecanismo); N_{R2} – número de reações depois da redução das espécies (LS – mecanismo); N_{R3} – numero depois da redução das reações (LF-mecanismo); B_i – símbolo da espécie que gera o valor δ_{Σ} ; erros locais (δ_1 – entre o C e o LE-mecanismo; δ_2 – entre o LE e o LS-mecanismo; δ_3 – entre o LS e o LF-mecanismo) determinados por:

$$\delta_{1} = \max \left| \frac{\gamma_{q}(C) - \gamma_{q}(LE)}{\gamma_{q}(C)} \right| \qquad \qquad \delta_{2} = \max \left| \frac{\gamma_{q}(LE) - \gamma_{q}(LS)}{\gamma_{q}(C)} \right| \tag{9}$$

$$\delta_{3} = \max \left| \frac{\gamma_{q}(LS) - \gamma_{q}(LF)}{\gamma_{q}(C)} \right| \qquad \qquad \delta_{\Sigma} = \max \left| \frac{\gamma_{q}(C) - \gamma_{q}(LF)}{\gamma_{q}(C)} \right| \tag{10}$$

onde $q \in CH_4$, O_2 , N_2 , $CO_2 e H_2O$.

Observa-se que para cada ponto (por exemplo: $\alpha_{ox} = 1$; P = 1atm; $T_o = 2300$ K) a redução começa a partir do C-mecanismo ($N_{RO} = 131$ reações). A redução principal (para $\alpha_{ox} = 1$) ocorre na primeira etapa quando do C-mecanismo são excluídas: $N_{RO} - N_{R1} \approx 80$ reações (com erro médio $\overline{\delta}_1 \approx 0,003$). Na segunda etapa do LE-mecanismo são excluídas: $N_{R1} - N_{R2} \approx 25$ reações, com erro médio local $\overline{\delta}_2 \approx 0,03$. Na terceira etapa do LS-mecanismo são excluídas: $N_{R2} - N_{R3} \approx 10$ reações com erro médio local $\overline{\delta}_3 \approx 0,02$. O erro global por espécies prescritas é visível e oscila no intervalo $\delta_{\Sigma} = 0,01...0,06$. A espécie responsável pelo valor δ_{Σ} é principalmente o O_2 .

Após, todos os LF-mecanismos (para $\alpha_{ox} = 1$ e T_o = 2700K ...1800K) são unidos em um F($\alpha_{ox} = 1$)-mecanismo que contém 14 espécies (H, O, N₂, O₂, OH, H₂, H₂O, HO₂, HCO, CO, CO₂, CH₃, CH₄ e CH₂O) e 13 reações apresentadas na Tab. 1, onde N_r – número da reação no C-mecanismo [1]; T_{ap} – temperatura da primeira inclusão da reação no F($\alpha_{ox} = 1$)-mecanismo. O principal conjunto de reações é incluído quando T_o = 2700K, pois atua a regra "Se a reação é incluída no F-mecanismo para alguma T_o esta reação tem que ser considerada para outras temperaturas". Assim, após a formação do LF-mecanismo para T_o = 2700K, no F-mecanismo são adicionadas apenas três reações: 6R (2600K), 13R (1800K) e 15R (1800K). Este mecanismo reflete o principal caminho da transformação dos reagentes (CH₄ e O₂) em produtos de combustão (H₂O e CO₂) através dos radicais e espécies intermediárias: H, O, OH, HO₂, HCO, CO, CH₃ e CH₂O. Os esquemas colaterais da combustão são realizados com pequenas velocidades, fazendo com que o mecanismo F($\alpha_{ox} = 1$) seja simples.

Nr	Reação	T _{ap}	N _r	Reação	T _{ap}
2R	H+O ₂ =O+OH	2700	27R	$CH_4+H=CH_3+H_2$	2700
4R	H ₂ +OH=H ₂ O+H	2700	29R	CH ₄ +OH=CH ₃ +H ₂ O	2700
5R	OH+OH=H ₂ O+O	2700	33R	CH ₃ +O=CH ₂ O+H	2700
6R	H+OH+M=H ₂ O+M	2600	47R	CH ₂ O+OH=HCO+H ₂ O	2700
13R	$H+O_2+M=HO_2+M$	1800	48R	HCO+M=CO+H+M	2700
15R	HO ₂ +H=OH+OH	1800	49R	HCO+H=CO+H ₂	2700
24R	CO+OH=CO ₂ +H	2700			

Tabela 2. Reações do F($\alpha_{ox} = 1$) mecanismo para: P = 1atm, T_o = 2700...1800K e $\zeta_k = 0.02$.

Resultados análogos da formação do F-mecanismo (Tabela 3) são obtidos para $1,00 \le \alpha_{ox} \le 1,42$, P = 1atm e $\zeta_k = 0,02$. O erro global por espécies prescritas é alterado no intervalo $\delta_{\Sigma} \approx 0,01...0,03$. O mecanismo F($\alpha_{ox} = 1,42$) inclui somente 10 reações (Tab. 2 excluindo as reações: 6R, 27R, 49R) e contêm as mesmas 14 espécies. A substância responsável pelos valores δ_{Σ} em geral é o CH₄.

Assim, para meios reagentes pobres ($\alpha_{ox} \ge 1,0$) os F-mecanismos são simples e, introduzindo-os nos CFD-modelos o volume de cálculo pode ser reduzido (na parte da combustão) em $\left(\frac{131}{13}\right) \times \left(\frac{28}{14}\right)^3 \approx 80$ vezes com erros admissíveis.

Acoplando todos os $F(\alpha_{ox})$ mecanismos (para $\alpha_{ox} = 1,00$; 1,15; 1,42) obtém-se o GF-mecanismo (ou seja, um mecanismo reduzido global para toda área de aplicação).

T _o	N _{R1}	N _{R2}	N _{R3}	δ_1	δ_2	δ_3	δ_{Σ}	Espécie
2400	49	26	10	0,0017	0,0028	0,029	0,034	CO ₂
2300	49	26	10	0,0016	0,0025	0,025	0,028	CO ₂
2200	49	26	10	0,0017	0,0022	0,025	0,026	CH ₄
2100	49	26	10	0,0020	0,0022	0,026	0,023	CH ₄
2000	49	26	10	0,0023	0,0026	0,026	0,021	CH ₄
1900	49	26	10	0,0028	0,0029	0,027	0,021	CH_4
1800	49	26	10	0,0032	0,0034	0,026	0,019	CH ₄
1700	49	26	10	0,0027	0,0039	0,018	0,011	CH ₄
1600	47	25	10	0,0023	0,0044	0,011	0,004	CH_4

Tabela 3. Resultados de redução para: $\alpha_{ox} = 1,42$; $\zeta_k = 0,02$ e $T_o = 2400...1600$ K.

Com o decréscimo de ζ_k , todos os erros (incluindo δ_{Σ}) devem ser reduzidos. Assim, foram executados cálculos na mesma área de aplicação, mas com limiares $\zeta_k = 0.01$. Os resultados da comparação dos erros globais para T_o, com $\zeta_k = 0.01$ e $\zeta_k = 0.02$ estão mostrados na Fig. 2.

Figura 2. Distribuição dos erros globais (δ_{Σ}) da temperatura T_o para diferentes valores ζ_k . ($\alpha_{ox} = 1,00$ (\blacktriangle); $\alpha_{ox} = 1,42$ (\circ)).

Em geral os erros δ_{Σ} decrescem com o diminuir dos limiares, mas sem regularidade. Em média (na passagem de $\zeta_{k} = 0.02$ a $\zeta_{k} = 0.01$) os valores δ_{Σ} diminuem, ou seja, para $\alpha_{ox} = 1.00$ aproximadamente em 2,5 vezes e para $\alpha_{ox} = 1.42$ aproximadamente em 2,0 vezes.

Com o decréscimo dos limiares, nos $F(\alpha_{ox})$ mecanismos são incorporadas mais reações. Por exemplo, quando $\zeta_k = 0.02$, o mecanismo $F(\alpha_{ox} = 1.42)$ é constituído por 10 reações e quando $\zeta_k = 0.01$ este mecanismo é constituído por 12 reações.

Conclusões

1. Foi proposta uma nova técnica de redução dos mecanismos complexos de reações químicas para uma zona formada pelos intervalos prescritos de α_{ox} , P e T, o que permite usar estes mecanismos para o cálculo de fluxos reagentes multidimensionais. Esta técnica de redução consiste de três etapas: método de engajamento, análise das substâncias e análise das reações.

2. A abordagem desenvolvida foi aplicada para formar os F e os GF-mecanismo para o meio reagente "CH₄ + ar" nos intervalos da alteração dos parâmetros: $\alpha_{ox} = 1,00...1,42$; P = 1atm e T = 2700...1600K, variando os limitares de $\zeta_k = 0,01$ a $\zeta_k = 0,02$.

3. No andamento dessas pesquisas foram obtidos os seguintes resultados:

- na subárea de $\alpha_{ox} > 1,0$ a redução do C-mecanismo ($\zeta_k = 0,02$) é considerável: aproximadamente em 10 vezes com erro global médio $\overline{\delta}_{\Sigma} \approx 0,03$; isso é provocado pela simplificação do esquema de formação dos produtos de combustão nesta subárea;

- a influência dos limiares é considerável, mas não é regular; na passagem de $\zeta_k = 0,02$ a $\zeta_k = 0,01$ os valores δ_{Σ} diminuem de modo diferente para diferentes α_{ox} .

Agradecimentos

Os autores agradecem ao "Fundo de Pesquisas Fundamentais Russo" (RFFI) com cujo apoio (projeto 13-08-97070) foi realizado o presente trabalho.

Referências

[1] P. Glarborg, J. A. Miller, R.J. Kee, R. J, Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors, Combustion and Flame, vol. 65, pp.177-202, (1986).

[2] R. P. Lindstedt, L. Q. Maurice, Detailed chemical-kinetic model for aviation fuels, Journal of Propulsion and Power, vol. 16, No 2, pp. 187-195, (2000).

[3] U. Maas, s. B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combustion and Flame, vol. 88, pp. 239-264, (1992).

[4] T. Nagy, T. Turanyi, Reduction of very large reaction mechanisms using methods based on simulation error minimization, Combustion and Flame, vol. 156, pp. 417-428, (2009).

[5] M. D. Smooke, "Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames", Springer-Verlag, Berlin, 1991.

[6] A. P. Spilimbergo, G. O. Veloso, V. G. Krioukov, R. L. Iskhakova, Método de "engajamento": aplicação numa zona de alteração dos parâmetros do meio reagente, em "Actas do CMNE/2007 (Congresso de Métodos Numéricos em Engenharia)", Porto, Portugal, 2007.

[7] W. Sun, Z. Chen, X. Gou, Y Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combustion and Flame, vol. 157, pp. 1298-1307, (2010).

[8] L. Tianfeeng, J. Yiguang, K. L. Chung, Complex CSP for chemistry reduction and analysis, Combustion and Flame, vol. 126, pp. 1445-1455, (2001).