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Abstract— On this work we present an adaptive bi-dimensional ideal magnetohydrodynamics (MHD) model
using finite volume discretization, in the context of wavelet analysis. The goal of this work is to present some
new results of the divergence cleaning techniques we are using concerning to the divergence of magnetic field,
conservative properties of the model and computational costs.
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Resumo— Neste trabalho é apresentado um modelo magneto-hidrodinâmico (MHD) ideal bi-dimensional uti-
lizando uma discretização por volumes finitos, no contexto da análise wavelet. O objetivo deste trabalho é
apresentar novos resultados obtidos com a técnica de correção de divergência utilizada, relativos à divergência
do campo magnético, propriedades conservativas do modelo e custo computacional.

Palavras-chave— Fluidodinâmica, Plasma e Turbulência, Magneto-hidrodinâmica, Discretização por Volu-
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1 Introduction

The interest of our research is the space plasma
studies, where we have many phenomena related
to magnetic fields, as the solar wind and the solar
flares (Powell et al., 1999). The magnetohydrody-
namics (MHD) is the study of the interaction of
magnetic fields and conducting fluids, it expresses
in a global view the magnetic fields influence many
natural and artificial flows. In our present work,
we study the numerical approach in a ideal magne-
tohydrodynamics model with and without diver-
gence cleaning correction (Dedner et al., 2002) in
finite volume methods with an adaptive formula-
tion (Rousell et al., 2003; Domingues et al., 2008;
Gomes, 2012; Domingues et al., 2013).

2 Ideal MHD Model

When the plasma components are not far from
the local thermodynamic equilibrium, the plasma
has a Maxwellian function of distribution, the heat
flux is not important, the neutrality condition of
charge holds, and the high-frequency component
of magnetic field can be neglected, we have the
equations of the Ideal MHD model in a conserva-

tive form:

∂ρ

∂t
+∇ · ρu = 0 (1a)

∂ρu

∂t
+∇ ·

(
ρuu+ I

(
p+

B ·B
2

)
−BB

)
= 0 (1b)

∂B

∂t
+∇ · (uB−Bu) = 0 (1c)

∂E

∂t
+∇ ·

[(
E + p+

B ·B
2

)
u−B (u ·B)

]
= 0 (1d)

where u = (ux, uy, uz) denotes the fluid velocity,
B = (Bx, By, Bz) the magnetic induction, ρ the
density, p the pressure, I the second order identity
tensor and E the energy given by

E =
p

γ − 1
+ ρ

u · u
2

+
B ·B

2
, (2)

with γ > 1 denotes the adiabatic exponent. For
the magnetic field we have the divergence con-
straint ∇ · B = 0, called magnetic flux equa-
tion. Physically, this constraint holds, but when
it comes to numerical simulations some errors are
propagated, leading to ∇·B 6= 0. When the diver-
gence constraint is not satisfied, the solution can
become non-physical. Thus, to prevent this kind
of behavior, we add a divergence cleaning correc-
tion to the model, as shown in the next section.
It correction controls, in principle, this undesired
numeric effect in the finite volume discretizations.

By adding the parabolic-hyperbolic diver-
gence cleaning as presented in (Dedner et al.,
2002), we derive two models from the Ideal MHD
model: the Generalized Lagrangian Multiplier
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(GLM) and the Extended GLM (EGLM). Both
formulations of Ideal MHD are two-dimensional,
but only the GLM one is purely conservative. For
the GLM-MHD model we have the following con-
servation laws equations:

∂ρ

∂t
+∇ · ρu = 0 (3a)

∂ρu

∂t
+∇ ·

(
ρuu+ I

(
p+

B ·B
2

)
−BB

)
= 0 (3b)

∂B

∂t
+∇ · (uB−Bu+ ψI) = 0 (3c)

∂E

∂t
+∇ ·

[(
E + p+

B ·B
2

)
u−B (u ·B)

]
= 0 (3d)

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ (3e)

where ψ is the potential function.
For the EGLM-MHD model, we have the fol-

lowing equations.

∂ρ

∂t
+∇ · ρu = 0

∂ρu

∂t
+∇ ·

(
ρuu + I

(
p+

B ·B
2

)
−BB

)
= −B(∇ ·B) (4a)

∂B

∂t
+∇ · (uB−Bu + ψI) = 0

∂E

∂t
+∇ ·

[(
E + p+

B ·B
2

)
u−B (u ·B)

]
= −B(∇ψ) (4b)

∂ψ

∂t
+ c

2
h∇ ·B = −

c2h
c2p
ψ

Both models presented here are formulated
using the parabolic-hyperbolic correction. In
addition, the parameter ch is evaluated as the
following equation

ch =
cCFL
∆t

min(∆x,∆y), (5)

where cCFL is the CFL number, ∆x, ∆y are the
x and y space steps. We also have the parameter
cr = c2p/ch, chosen as cr = 0.18.

2.1 Conservative Properties

Two important conservative properties of Ideal
MHD model are the energy and the time deriva-
tive of helicity. The energy should have a constant
behavior over time and its equation is given by 2.
On the other hand, the time derivative of Helicity
must be zero over time and its equation is

∂H

∂t
= −2

∫
V

(−u×B) ·B dV, (6)

where H denotes the helicity and V is the volume.

3 Numerical Discretization

3.1 Finite Volume

Our ideal MHD model is hyperbolic, thus here
we are using a finite volume scheme to hyperbolic
conservation laws such as

∂U

∂t
+∇ · F(U) = S(U), (7)

where U = (ρ, p, ψ, ux, uy, uz, Bx, By, Bz) is the
vector of variables and F(U) is the physical flux.
To calculate F(U) of the MHD model we have
to make approximations using numerical schemes,
whereas U is not a known function.

In our work we use the Harten-Lax-van Leer-
Discontinuities (HLLD) Riemann solver, as pro-
posed in (Miyoshi and Kusano, 2005).

Adaptive Multiresolution Approach

The main idea behind MR schemes is to use the
decay of wavelet coefficients of the numerical so-
lution to obtain information on the local regu-
larity of the solution. Small coefficients occur
in regions of smoothness of the solution, where
coarser grids can be used, while fine grid refine-
ment is only applied in regions where the coeffi-
cients are significant, corresponding to strong vari-
ations [4]. Adaptive MR representations are ob-
tained by stopping the refinement in a cell at a cer-
tain scale level, where the wavelet coefficients are
non-significant. In the finite volume context, in-
stead of using a cell-average representation on the
uniform fine mesh, the MR scheme computes the
numerical solution represented by cell-averages on
an adaptive sparse mesh, which is formed by the
cells whose wavelet coefficients are significant and
above a given threshold. Since the regions of
smoothness or irregularities of the solution may
change with time, the MR grid at tn may not be
convenient anymore at the next time step tn+1.
Therefore, before doing the time evolution, the
representation of the solution should be interpo-
lated onto an extended grid that is expected to be
a refinement of the adaptive grid at tn, and to con-
tain the adaptive grid at tn+1. Here we consider a
threshold parameter ε` , where l denotes the cell
scale level, following Harten’s threshold strategy.

ε` =
ε

|Ω|
22(l−L+1), 0 ≤ l ≤ L− 1, (8)

where L is the finest scale level, and |Ω| is the area
of the domain. The time integration is performed
by a second order Runge-Kutta scheme.

4 Numerical Experiment

In this section we show the comparative results ob-
tained with MHD without correction, GLM-MHD
and EGLM-MHD schemes, for different threshold
parameters ε0 = 0.05, ε0 = 0.005 and ε0 = 0.001.
We have tested the initial condition 2D Riemann,
as shown in Table 4, with Neumann boundary con-
dition. The other parameters chosen are γ = 5/3,
CCFL = 0.3, and L = 9. In the adaptive con-
text we study here, we can see that the values
of divergence and time derivative of helicity are
very close when calculated with GLM-MHD and
EGLM-MHD models. The max |∇ · B| is pre-
sented in Figure 1 over time, for ε0 = 0.05. We

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 1, N. 1, 2013.

DOI: 10.5540/03.2013.001.01.0087 010087-2 © 2013 SBMAC

http://dx.doi.org/10.5540/03.2013.001.01.0087


Table 1: 2D Riemann initial condition.
x < 0, y > 0

ρ ρ vx ρ vy ρ vz
1.0304 1.5774 -1.0455 -0.1016

E Bx By Bz

5.7813 0.3501 0.5078 0.1576

x < 0, y < 0

ρ ρ vx ρ vy ρ vz
1.0000 1.7500 -1.0000 0.0000

E Bx By Bz

6.0000 0.5642 0.5078 0.2539

x > 0, y < 0

ρ ρ vx ρ vy ρ vz
1.8887 0.2334 -1.7422 0.0733

E Bx By Bz

12.999 0.5642 0.9830 0.4915

x > 0, y > 0

ρ ρ vx ρ vy ρ vz
0.9308 1.4557 -0.4633 0.0575

E Bx By Bz

5.0838 0.3501 0.9830 0.3050

can observe that it has smaller values when calcu-
lated with the corrected models GLM-MHD and
EGLM-MHD. For the other values of ε0 tested the
results are close.

Figure 1: Maximum divergence of B over time for
MHD, GLM and EGLM schemes for ε0 = 0.05
and t = 0.1.

The energy of the MHD system was also
tested and it has a constant value during all the
simulations and all ε0 studied cases. The ∂H/∂t
has some oscillation after t = 0.045 for ε0 = 0.05,
and t = 0.08 for ε0 = 0.001, but these values are
nearby and converge to zero machine, as expected.

(a) ε0 = 0.05

(b) ε0 = 0.005

(c) ε0 = 0.001

Figure 2: ∂H
∂t for MHD, GLM and EGLM schemes

and ε0 = 0.05, ε0 = 0.005 and ε0 = 0.001, for
t = 0.1.

Table 2: CPU time and memory compression per-
centage of MHD models

ε0 = 0.05
Time Memory (%)

MHD 6min50s 34.28
GLM-MHD 6min52s 34.26

EGLM-MHD 6min56s 34.27
ε0 = 0.005

Time Memory (%)
MHD 8min18s 41.19

GLM-MHD 8min20s 41.25
EGLM-MHD 8min28s 41.26

ε0 = 0.001
Time Memory (%)

MHD 9min37s 47.56
GLM-MHD 9min47s 47.76

EGLM-MHD 9min49s 47.77

The MHD and GLM-MHD models have sim-
ilar maximum divergence values over time. How-
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ever, in Figure 3 we can see that the solution
obtained with the MHD model without correc-
tion has undesired structures. In Table 2, we
observe that the CPU time of all MHD models
tested here are very close, what enforce the sim-
ulate the GLM-MHD model is not so expensive.
The space visualization of absolute magnetic field

(a) MHD

(b) GLM-MHD

Figure 3: z-component of velocity obtained with
MHD and GLM-MHD models for ε0 = 0.05, t =
0.1 and L = 9.

divergence in Figures 4 (b), (c) shows that we
have larger values of ∇ · B when the solution of
MHD model presents more structures like shocks.
Therefore, the adaptive mesh for the final time,
in Figure 4 (a), presents more refinement in the
regions where the variables have more structures
(29.93% of the cells). In this case, the adaptive
mesh is obtained as the union of all the individ-
ual adaptive meshes. Also, it is important to no-
tice that the divergence values for the GLM-MHD
scheme are bounded in the interval [0, 0.8], and for
the MHD scheme these values are bounded in the
interval [0, 2.3].

(a) Adaptive mesh

(b) GLM-MHD

(c) MHD

Figure 4: Adaptive mesh and ∇·B obtained with
MHD without correction and GLM-MHD model
for ε0 = 0.05 and t = 0.1.

5 Conclusions

The results present in this study are encourag-
ing to this wavelet adaptive method. First, we
obtained that the values of magnetic field diver-
gence and conservative proprieties are very close,
when calculated with GLM-MHD and EGLM-
MHD models in the adaptive simulations. More-
over, they are closer to the FV scheme method
ones. The max |∇ · B| over time has smaller val-
ues when calculated with the corrected models
GLM and EGLM and non undesired structures
are presented. Finally, we observe in this study
that the CPU time of all tested MHD adaptive
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models are very close, however the GLM-MHD
model is slightly computationally cheaper, and as
it has theoretical conservation propriety, it is our
choice for further studies .
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