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Abstract: In this short communication, we show that the validity of the Leibniz rule for a frac-
tional derivative on a coarse-grained medium brings about a modified chain rule, in agreement
with alternative versions of fractional calculus. We compare our results to those of a recent
article on this matter.
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1 Introduction

Fractional calculus (FC) is a mathematical tool which has a wide range of applications to math-
ematical modelling in physical sciences, biological and biomedical engineering, control systems
and dynamic modelling of soils, among many others [18, 7]. It has a history of over 300 years
and an extensive bibliography has been produced on this subject matter. Complex systems
whose dynamical behaviour is described by so-called anomalous functions, with fractional pow-
ers decreasing behaviour are well described by the FC machinery. There are several approaches
to FC, depending on the applications envisaged.

In a recent article [17], it is argued that violation of the Leibniz rule is a characteristic
property of non-integer order derivatives, and that non-integer order derivatives satisfying the
Leibniz rule must be of entire order α = 1. In the same article, the author suggests that the
result, which has been proven for a function f of class C2, f ∈ C2(U), would hold also for any
formulation of FC applied to functions that are not necessarily differentiable.

In certain physical models of our real world, one deals with observables that are not nec-
essarily differentiable functions, and may have fractal characteristics (so-called ’coarse-grained’
spaces [6]), see e.g. [15], [13] or [2].

A continuous, nowhere integer-differentiable function, necessarily exhibits random-like or
pseudo-random features, which links this story to extensions of the theory of stochastic differen-
tial equations to describe stochastic dynamics driven by fractional Brownian motion [8, 9, 10].
For an interesting effort in building up a solid geometry and field theory in fractional spaces,
see [2, 3, 4, 5].

A good mathematical framework for fractional derivative operators is that of Hölder spaces
Hλ [14], which finds abundant applications even in the stock market [16].

In this letter, we follow in the footsteps of [17] and start with a fractional differential operator
Dα of order α, which is assumed to satisfy the Leibniz rule, then derive a fractional chain rule
of sorts for Dα. Throughout we deal with identities just as in [17], and not with L2−type
almost-everywhere equalities throughout.
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2 Hölder space and coarse-grained media

According to Samko et al. [14], let Ω = (a, b), −∞ < a < b <∞ , so Ω may be a finite interval,
a half-line or the whole line. First let Ω be a finite interval. A function F (x) is said to satisfy
the Hölder condition of order λ on Ω if

|F (x1)− F (x2)| ≤ A|x1 − x2|α, (1)

for any x1, x2 ∈ Ω, where A is a constant and α is the Hölder exponent. If the function f(x)
satisfies the Hölder condition it is continuous on Ω [14], that is, if the Hölder coefficient is merely
bounded on compact subsets of Ω, then the function F is said to be locally Hölder-continuous
with exponent α in Ω.

Now to define the Hölder space, let again Ω be a finite interval. We denote by Hλ = Hλ(Ω)
the space of all functions which in general are complex valued, and satisfying the Hölder condition
of a fixed order λ on Ω. This is a locally convex topological vector space.

Hölder space and nowhere differentiable functions are related. An immediate example of this
is the Weierstrass function that is nowhere integer-differentiable [11]. The Weierstrass function
may be written as

Wα(x) =
∞∑
n=0

b−nα cos(bnx) (2)

for some 0 < α < 1. Then Wα(x) is Hölder-continuous of exponent α, which is to say that there
is a constant C such that

|Wα(x)−Wα(y)| ≤ C|x− y|α (3)

for all x and y. Moreover, W1 is Hölder-continuous of all orders α < 1 but not Lipschitz
continuous.

3 Main results

Below we derive, out of the Leibniz rule, a fractional chain rule of sorts for compositions f ◦ w
where f is C2 and w is not necessarily C1, similarly as in [7]. Here, we assume the same premisses
for the conditions of operational linearity, the fractional derivative of a constant being zero and
the validity of the fractional Leibniz rule as in [17].

Just as a locally L1 function f is a measurable function which is L1 at every compact interval,
we call a function locally Hölder of exponent α if and only if f is Hölder of exponent α on every
finite interval [a, b]. One such example is that of f ∈ C1(R), taking α = 1. Let f, g be functions
that are locally Hölder-continuous of exponent α, namely, satisfying the Hölder condition of
exponent α on every compact interval [a, b] of their domain. Then so is fg.

Proof. It is entirely analogous to that of the formula for the derivative of a product. � Let
f ∈ C2(I), where I, J ⊂ R, and let w : J → I be a Hölder-continuous function of exponent
0 < α < 1, where J ⊂ R is another interval. Consider a fractional derivative Dα of order
α, satisfying the Leibniz rule, whose domain includes all locally Hölder-continuous functions of
order α. Then the following statement holds:

Dα
x (f ◦ w) = Dα

wf(w(x))(Dα
xw(x)). (4)

Proof. Clearly, Dα
x1 = 0 [17], since the Leibniz rule is assumed. Let x0 ∈ J , and let t0 = w(x0)

and t = w(x). Indeed, by repeated integration by parts one obtains the following identity:

f(t)− f(t0) = f ′(t0)(t− t0) + g2(t)(t− t0)2, (5)
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where g2(t) =
´ 1
0 (1− s) f ′′(t0 + s(t− t0))ds. Note that,

g2(t) =

{
f(t)−f(t0)
(t−t0)2 −

f ′(t0)
(t−t0) =

´ t
t0

(t−τ)f ′′(τ)
(t−t0)2 dτ, t 6= t0

2−1f ′′(x), t = t0
, (6)

and using Taylor’s theorem

g2(t) =

{
2−1f ′′(t0)(t−t0)2+o((t−t0)2)

(t−t0)2 , t 6= t0

2−1f ′′(x), t = t0
(7)

From which it follows directly that g2(t)(t=t0) and g2(t)(t=t0)
2 belong, respectiely, to C1(I)

and C2(I).
Now, from eq.(5) one obtains the following identity:

f(w(x)) = f(w(x0)) + f ′(w(x0))(w(x)−w(x0)) + [g2(w(x))(w(x)−w(x0))][w(x)−w(x0)]. (8)

Applying the Leibniz rule to the product [g2(w(t))(w(t)− w(x0))]· (w(x)− w(x0) yields

Dα
x ([g2(w(x))(w(x)− w(x0))]· (w(x)− w(x0)) = (w(x)− w(x0))H(x), (9)

for a suitable function H(x). It follows that, for x = x0,

Dα
x (g2(w(x))(w(x)− w(x0))

2)|x=x0 = 0. (10)

Thus, on applying Dα
x to (8) and evaluating on x0 ∈ J , one obtains

Dα
x (f ◦ w)(x0) = f ′(w(x0))(D

α
xw)(x0), (11)

which settles the Theorem. � We remark that every function w in the domain of Dα is allowed
in our formula, provided f ◦ w also lies in its domain.

Non-Integer Differentiable Functions

Consider now that w is of class C1 and f is Hölder-continuous, then for Riemann-Liouville
fractional derivatives and even for the Caputo definition, the scale property holds through

Dα
xf(λx) = λαDα

wf(w); w = λx. (12)

But, considering the relation
λα = [D1

x(λx)]α (13)

then, eq.(12) can be rewritten as

Dα
xf(λx) = [D1

x(λx)]αDα
wf(w) (14)

or
Dα
x (f ◦ w) = [(Dα

wf) ◦ w]· (w′)α. (15)

Eq. (15) turns out to be the same chain rule that is valid for nondifferentiable functions in
the alternative versions of FC [7], considering w = λx as differentiable while f(w) is nondiffer-
entiable.
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4 Conclusions

Departing from the main result in [17], we endeavoured to study the case where the fractional
derivative Dα

x contains locally Hölder functions of exponent α in its domain, and satisfies the
Leibniz rule. Hadamard’s representation theorem for f ∈ C2 around an arbitrary point yields
a fractional chain rule for such Dα applied to f ◦ w, where w is locally Hölder of exponent α,
cf. eq (11). As well, we have seen in (14) a formula in the case where w is of class C1 and f is
Hölder-continuous.

Our main goal here was to reassess a generalization of the Main Theorem in [17]. In so
doing, we derived a fractional chain rule for a fractional derivative of order 0 < α ≤ 1 whose
domain includes C1 or even locally Hölder-continuous functions (which describe coarse-grained
media), provided the Leibniz rule holds. This in turn implies that Leibniz role holds for some
alternative definitions of fractional derivatives [7, 11, 1, 12].
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