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Abstract— This paper presents an active control strategy based on the periodic time varying linear quadratic
regulator problem to attenuate the vibration of a coupled rotor-blade system via shaft actuation. For this
system, a periodic modal decomposition method is applied to decouple part of the system dynamics, which
ultimately provides a reduced order model. Then, a periodic LQR controller obtained as the solution of a periodic
Riccati differential equation is designed. For comparison purpose, three others controllers are also designed. A
proportional derivative controller, an LQR controller based on a single LTI model, and an LQR controller based
on multiple LTI models. Numerical simulations show the superior performance of the proposed technique.
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1 Introduction

Although active control of vibrations for flexible
structures has been extensively studied for sev-
eral decades (Balas, 1978; Firoozian and Stan-
way, 1988; Khulief, 2001; Baz and Ro, 2001) its ap-
plication to rotor-blade systems using shaft-based
actuation is still an open area of research. Most of
the rotor-blade control design techniques assume,
by neglecting the rotor lateral motion and by con-
sidering that the rotor operates at constant an-
gular velocity, that the system is linear and time
invariant. However, in a more realistic applica-
tion, this is not the case and the system becomes
periodic, requiring more elaborate strategies.

Control design techniques that takes into ac-
count the fact that the system is periodic and time
varying have been reported during the last two
decades (Arcara et al., 2000; Sinha and Joseph,
1994a; Szász and Flowers, 2001). It was shown
in Szász and Flowers (2001) that the rotor and
the blade vibrations can be controlled by a shaft
based actuation if the rotor blades are deliberately
mistuned. In this work, the presence of paramet-
ric vibrations due to the coupling among the rotor
and the blades were not considered. Such effects
were analyzed in Christensen (2004) by consider-
ing the modal controllability and observability of
a coupled rotor-blade system that shows signifi-
cant vibration coupling among the rotor and the
blades. In Christensen and Santos (2005a), an ex-
perimental contribution is given that shows the
feasibility of a periodic modal control strategy.

The main contribution of our paper is to pro-
vide a control strategy based on the periodic time
varying linear quadratic regulator (LQR) problem
to attenuate the vibration of coupled rotor-blade
systems via shaft actuation, in which the rotor lat-

eral motion and the blade flexible motion are cou-
pled. An analytical periodic time varying model
that describes the dynamics of the rotor-blade sys-
tem is developed. The rotor angular motion and
the gyroscopic effect are neglected for simplicity,
and the blades are modeled as flexible Bernoulli
beams. For this system, a periodic modal de-
composition (Xu and Gasch, 1995) is applied to
transform the system dynamics matrix into a de-
coupled time invariant matrix. Afterward, the
system order is reduced. For this reduced order
model, a periodic LQR controller, obtained as the
solution of a periodic Riccati differential equation,
is designed. For comparison purpose, three oth-
ers controllers (based on Christensen and Santos
(2005b)) are used: a proportional derivative con-
troller; an LQR controller based on a single LTI
model; and an LQR controller based on multiple
LTI models. Numerical simulations show the su-
perior performance of the proposed periodic con-
troller, which is capable to cope with the time
periodicity of the system and to efficiently sup-
press the main vibration modes. Moreover, the
proposed periodic LQR controller is able to guar-
antee stability of the closed-loop rotor-blade sys-
tem.

2 Rotor-blade system

The mechanical system is a two-dimensional four-
bladed rotor with tip masses, rotating in a sus-
pended hub, which can be actuated in two per-
pendicular radial directions as shown in Fig. 1.
The hub motion is described by the (xh, yh) po-
sition in the fixed (x, y)-coordinate system. The
deflection of an arbitrary point on the i-th blade
is described by the (xi, yi) position in the moving
(xbi

, ybi
)-coordinate system. The angular position
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of blade 1 is given by θ(t). For a detailed expla-
nation see Christensen and Santos (2005b).

Figure 1: Two-dimensional four-bladed rotor-
blade system.

The analytical model was derived using the
Lagrangian formalism. The resulting model is a
time varying system that depends on the rotor-
position θ(t) and on the rotational speed Ω. By ro-
tating at constant speed, this model can be rewrit-
ten in a periodic time varying form, with period
T = 2π/Ω, given by

M(t)z̈(t)+D(t)ż(t)+K(t)z(t) = p(t)+Qu(t) (1)

where the periodic matrices M(t), D(t) and K(t)
represent, respectively, the mass, damping and
stiffness of the system, Q is an input matrix,
u(t) is the control force that acts on the hub,
and p(t) represents internal periodic conservative
forces originating from the hub unbalance and
the unbalance due to the mistuned blades. The
state of the system is z(t) = {xh; yh; q1; q2; q3; q4},
where the vector qi(t) = {qi,1(t); ...; qi,m(t)} rep-
resents the generalized time-dependent coordinate
associated with the spatial mode shape ϕi(xi)
of the i-th blade, i.e., the transverse deforma-
tion of the blade was discretized using the follow-
ing expansion yi(xi, t) =

∑m
j=1 ϕi,j(xi)qi,j(t) =

ϕi(xi)qi(t), where m defines the number of blade
bending modes. The total degrees of freedom is
N = 2 + 4m.

The physical output of the system, at the em-
ployed sensors, is given by

y(t) = Chz(t)

This matrix Ch transforms the z coordinate into
the physical form y(t) = {xh; yh; y1; y2; y3; y4},
which is defined in the system coordinate. The
hub based degrees of freedom xh e yh are already
in physical coordinates, but the blade tip deflec-
tion yi is a combination of all the m modes of the
blade.

By defining the state vector

x(t) =
{

z(t)
ż(t)

}
equation (1) can be represented in the following
periodic time varying state-space form

ẋ(t) = A(t)x(t) + B(t)u(t) + f(t)
y(t) = Cx(t)

(2)

with

A(t) =
[

0 I
−M(t)−1K(t) −M(t)−1D(t)

]
,

B(t) =
[

0
−M(t)−1Q

]
, f(t) =

{
0

−M(t)−1p(t)

}
,

C =
[
Ch 0

]
(3)

2.1 Periodic modal decomposition

The periodic equation (2) can be partially de-
coupled using an appropriate transformation ma-
trix (Sinha and Joseph, 1994b; Xu and Gasch,
1995; Christensen and Santos, 2005b). By in-
troducing the Lyapunov-Floquet transformation
x(t) = R(t)ξ(t) (and ξ(t) = LT (t)x(t)), where ξ(t)
is a vector of modal states and R(t) and L(t) are
the right- and left-side modal transformation ma-
trices, one obtains the following modal equation

ξ̇(t) = Aξ(t) + B(t)u(t) + f(t)
y(t) = C(t)ξ(t)

(4)

with

A =
[
LT (t)A(t)R(t)− LT (t)Ṙ(t)

]
,

B(t) = LT (t)B(t), f(t) = LT (t)f(t),
C(t) = CR(t)

The periodic matrices R(t) and L(t) are deter-
mined by solving the associated time-dependent
eigenvalue problem. Note that the system ma-
trix A(t) was transformed into a time invariant
diagonal modal matrix A, however, all the others
matrices still remain time varying.

2.2 Model order reduction

Only the first bending mode, being the far most
significant (Christensen and Santos, 2005b) is con-
sidered for control design. Therefore, the modal
model (4) is reduced to a six degrees of freedom
system, containing only the two modes related to
the hub motion and the first bending mode of the
four blades, giving a system of dimension N = 12.

Since (4) can contain complex entries, it is
also appropriate to partition the state coordinate
into real- and imaginary parts giving the following
model (of twice the size) with real entries:

˙̃
ξ(t) = Ãξ̃(t) + B̃(t)u(t) + f̃(t)

y(t) = C̃(t)ξ̃(t)
(5)
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3 Controller design

It was shown in Szász and Flowers (2001) and
Christensen and Santos (2005b) that the vibration
of the two-dimensional four-bladed rotor-blade
system can be attenuated using control forces act-
ing on the hub. However, classical control design
procedures can not be directly applied since the
equation of motion of the system is periodic time
varying. Moreover, system stability cannot be in-
ferred from the location of the closed-loop eigen-
values as done for linear time invariant systems.
Recall that the periodic modal decomposition, ap-
plied in the previous section, only transformed the
periodic time varying system matrix A(t) into a
constant modal matrix A, however the modal ma-
trices B(t) and C(t) are still time dependent.

To cope with the periodic time varying na-
ture of the problem, a periodic LQR design is
proposed in Sec. 3.1. This methodology is able
to significantly improve the performance and ro-
bustness of the rotor-blade system. This tech-
nique is compared to three different controllers.
A proportional derivative controller taken from
Christensen and Santos (2006) and described in
Sec. 3.5. A single frozen model method taken
from Sinha and Joseph (1994b) and Christensen
and Santos (2005b). This method, presented in
Sec. 3.3, applies a time invariant LQR design to
a properly chosen LTI model. As an extension of
this method, a multiple frozen model method is
proposed in Sec. 3.4, which computes LQR con-
trollers for multiple LTI models obtained trough
a gridding of the input matrix B(t).

3.1 Linear quadratic regulator design

The optimal full state feedback gain is obtained
as a solution of an algebraic Riccati equation
(ARE). The LQR problem can also be solved effi-
ciently using linear matrix inequalities (Willems
and Mitter, 1971; Boyd et al., 1994). For lin-
ear time varying systems, the optimal LQR gain
is obtained as a solution of a differential Riccati
equation (Moore and Anderson, 1968a; Moore and
Anderson, 1968b; Athans, 1971; Anderson and
Moore, 1990).

Consider the following system

ẋ(t) = A(t)x(t) + B(t)u(t)

The central element of the LQR problem is the
design of a full state feedback law

u(t) = G(t)x(t)

that minimizes the quadratic cost function

J =
∫ ∞

0

(
xT (t)WQ(t)x(t) + uT (t)WR(t)u(t)

)
dt

with symmetric matrices WR(t) > 0 and WQ(t) ≥
0. The matrix WQ penalizes the system state

meanwhile the matrix WR penalizes the control
input. The optimal full state feedback gain, which
guarantees that the closed-loop system is asymp-
totically stable, is given by

G(t) = −WR(t)−1B(t)T X(t)

where the matrix X(t) is the solution of the fol-
lowing differential Riccati equation (DRE):

− Ẋ(t) = A(t)T X(t) + X(t)A(t) + WQ(t)

−X(t)B(t)W−1
R (t)BT (t)X(t) (6)

Once this DRE is solved, the optimal feedback
gain G(t) is readily obtained.

3.2 Solving the PRDE

When the system matrices in the LQR problem
are periodic, three methods are available to obtain
a suitable matrix solution X(t) of the periodic dif-
ferential Riccati equation (6), namely the one-shot
method, suggested in Hench and Laub (1994) and
evaluated in Johansson et al. (2007), the multi-
shot method, suggested in Varga (2005) and also
evaluated in Johansson et al. (2007), and the LMI
approach suggested in Gusev et al. (2007).

The one-shot technique is by far the most
simple method to implement. The method per-
forms well (for short periods T ) on small scale sys-
tems. The multi-shot method has been designed
to overcome some of the limitations of the one-
shot method, however, to implement this method,
it is necessary to compute and reorder a periodic
real Schur decomposition which is also a cumber-
some task for large scale systems.

A completely different approach, posed in the
linear matrix inequality (LMI) framework, is pre-
sented in Gusev et al. (2007). The method trans-
forms the time varying periodic matrices into time
invariant form via Fourier expansion and replace
the DRE by an a matrix inequality. Thereby, an
LMI optimization problem can be set up. The
LMI problem has been implemented using the
Yalmip toolbox for Matlab (Löfberg, 2004) and
solved using the SeDuMi solver (Sturm, 1999).
Since this method is computationally demanding,
the reduced non-complex modal system given by
(5) was used for the LQR design from Sec. 3.1.
Once the full state feedback gain is computed, it
can easily be transformed to the original form (2).

3.3 Single frozen model design

The main idea of the single frozen model method
(Sinha and Joseph, 1994b; Szász and Flowers,
2001; Christensen and Santos, 2005b) is to apply,
to the model (5), a standard LTI control design
technique computed using a frozen control pair Ã
and B̃0. In Szász and Flowers (2001), the matrix
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B̃0 has been chosen as the identity matrix, how-
ever, in Christensen and Santos (2005b), it was
chosen as B̃0 = B̃(t0) for an appropriate instant of
time t0.

Now, the classical time invariant LQR proce-
dure can be applied to the LTI modal system

˙̃
ξ(t) = Ãξ̃(t) + B̃0u(t)

to provide the control law

u(t) = G̃0ξ̃(t)

that minimize the cost function

J =
∫ ∞

0

(
ξ̃T (t)WQ(t)ξ̃(t) + uT (t)WR(t)u(t)

)
dt

Once the constant full state feedback gain G̃0

is obtained, it can be converted (as described in
Sinha and Joseph (1994b) and Christensen and
Santos (2005b)) into a periodic time varying gain
by solving for G̃(t) the following equation

B̃(t)G̃(t)ξ̃(t) = B̃0G̃0ξ̃(t) (7)

Since B̃(t) is a nonsquare matrix, the time vary-
ing gain G̃(t) is obtained via the Moore-Penrose
pseudoinverse as

G̃(t) =
(
B̃H(t)B̃(t)

)−1

B̃H(t)B̃0G̃0

It should be emphasized that this time varying
gain does not guarantee optimality nor stability
for the closed-loop time varying system.

3.4 Multiple frozen models design

The multiple frozen models method (MFM) is
similar to the single frozen model method (SFM),
presented in Sec. 3.3, in the way that the constant
state feedback LQR gain is calculated. However,
instead of trying to transform the constant gain
matrix G̃0 into a time varying gain G̃(t) using the
pseudoinverse, the MFM method distinguishes it-
self by computing multiple constant LQR gains
G̃i for the pair (Ã, B̃(t)), calculated at suitable
discretization of the period T = 2π/Ω, and then
generate the time varying gain G̃(t) by switching
amongst the designed constant gains G̃i.

3.5 Proportional derivative design

The time invariant proportional derivative (PD)
controller (as proposed in Christensen and Santos
(2006)) is based on the feedback of the hub’s posi-
tion xh and velocity yh. This control law is given
by

u(t) = −G1y(t)−G2ẏ(t)
y(t) = C̄hz(t)

For this application, the sensors and actua-
tors are collated, thus the output matrix C̄h is
the transpose of the input matrix Q. By inserting
the control law and the relation C̄h = QT into the
general equation of motion (1), one gets

M(t)z̈(t) + D(t)ż(t) + K(t)z(t) =

−Q(G1Q
T z(t) + G2Q

T ż(t)) + p(t)

Equivalently

M(t)z̈(t) + (D(t) + QG2Q
T )ż(t)

+ (K(t) + QG1Q
T )z(t) = p(t)

After an iterative procedure (see (Christensen
and Santos, 2006)), the gains G1 and G2 have been
chosen as the following diagonal matrices:

G1 =
[
104 0
0 104

]
, G2 =

[
50 0
0 50

]
3.6 Feedforward design

The controllers developed in the previous sections
did not include the known internal conservative
forces f(t) ≡ f(θ, Ω) due to unbalances. However,
since the angular velocity Ω and the rotor posi-
tion θ are known, it is possible to cancel out these
forces using a feedforward compensator.

The control input u(t) is split into two sep-
arate contributions u(t) = uc(t) + uf (t), where
uc(t) is the feedback control law, designed using
the techniques presented in the previous sections,
and uf (t) is the feedforward control law. From the
equation of motion (2), it is seen that in order to
cancel out the unbalance forces f(t) the following
equation must be fulfilled

B(t)uf (t) = −f(t)

Since the matrix B(t) is nonsquare, solving the
above equation for uf (t) is not always possible.
However, one or more solutions exist if

f(t) = B(t)B†(t)f(t) (8)

holds, where B†(t) is the Moore-Penrose pseudoin-
verse defined as B†(t) = (BH(t)B(t))−1BH(t).
Moreover, if the matrix B(t) has full column rank
(which is the case) then the solution is unique. A
direct calculation, using the structure given in (3),
shows that Eq. 8 is equivalent to

M−1(t)p(t) = V (V HV )−1M−1(t)p(t)

with V = M−1(t)Q. Now, if the internal conser-
vative force p(t) has the form p(t) = Qg(t), for
some g(t), then, the above equation reduces to

V g(t) = V V †V g(t) = V g(t)

Therefore, Eq. (8) is always satisfied whenever p(t)
has the form p(t) = {p1(t); p2(t); 0; . . . ; 0}, which,
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in fact, is the case, as the unbalance only affects
the hub’s motions. Since the statement (8) holds,
the feedforward law can be given by

uf (t) = −
(
BH(t)B(t)

)−1
BH(t)f(t)

4 Numerical results

The initial condition of the system has been cho-
sen as z(0) = {1; 1; 1; 1;−1;−1}[mm], meaning
that the hub is initially deflected one mm in both
(x, y)-direction and the first mode of the blades
are equally deflected one mm. The reason for the
negative sign of blade 3 and 4 is to make them
move in phase with the opposite blade instead of
completely out of phase, which would effectively
cancel out the blade-hub coupling. The angu-
lar velocity, for these comparisons, will be set at
Ω = 300 rpm. The impact of the unbalance force
p(t) is only included in Sec. 4.5, where the effect
of the feedforward compensator is considered.

4.1 Proportional derivative controller

Figure 2 shows the time domain response of the
hub xh-motion and the first blade tip deflection
d1, calculated considering only the first bend-
ing mode, for the open-loop system (dashed-line)
and the closed-loop system (solid-line) with the
proportional derivative controller, developed in
Sec. 3.5.

Figure 2: Hub displacements xh and the first
blade tip deflection d1.

It can be concluded that the PD controller
can attenuate the vibration of the hub since the
displacement xh decreases relatively fast. On the
other hand, the PD controller has little effect on
the blade deflection d1.

4.2 Single frozen model controller

Figure 3 shows the response of the open-loop
system (dashed-line) and the closed-loop system

(solid-line) with the LQR controller derived using
the single frozen model method from Sec. 3.3. The
weighting matrices for the LQR design was cho-
sen via a trial and error approach. The weighting
matrix WQ was selected as a diagonal matrix with
entries equal to 107 for the hub related modes and
equal to 106 for modes related to the blades. The
weighting matrix WR was also select as a diagonal
matrix given by WR = 10−1I.

Figure 3: Hub displacement xh and of the first
blade tip deflection d1.

The effect of this controller is far better than
the effect of the previous PD controller. The
hub motion is suppressed effectively at the initial
stage, however, when a certain level is reached the
motion decays very slow. The suppression of the
blade motion is not as effective as the one obtained
for the hub motion, but it is still better than the
system with the PD controller.

4.3 Multiple frozen models controller

Figure 4 shows the time domain response of the
hub xh-motion and the first blade tip deflection
d1 for the open-loop system (dashed-line) and the
closed-loop system (solid-line) with the multiple
frozen models controller from Sec. 3.4.

The weighting matrices WQ and WR have
been chosen as the same as for the single frozen
model controller. The time responses of the
closed-loop system using this controller are seen
to be quite similar to the frozen model controller.
The blade motion decays quicker, however, after
a minimum level has been reached, there is a re-
maining undesired blade vibration.

4.4 Periodic LQR controller

Figure 5 presents the results of the open-loop
system (dashed-line) and the closed-loop system
(solid-line) using the periodic LQR controller from
Sect. 3.1. Trough numerical simulations, the
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Figure 4: Hub displacement xh and of the first
blade tip deflection d1.

weighting matrix WQ has been chosen as a di-
agonal matrix with entries given by 104 for the
hub related modes and 103 for the blade related
modes. Note that since the states of the system
(5) are decoupled, the matrix Q can be chosen as
diagonal. The control weighting matrix has been
chosen as WR = 10−1I.

Figure 5: Hub displacement xh and of the first
blade tip deflection d1.

The periodic LQR controller improved signif-
icantly the performance of the closed-loop sys-
tem compared to the previous controllers. This
was expected, since this controller is guarantee to
minimize a quadratic cost function that penalize
the system states of the periodic system. The
responses are seen to decay rapidly. Moreover,
the vibrations of all the states die out completely,
which were not the case with the previous con-
trollers. It could have been hoped that the con-
troller did not need as many periods of the blades
vibrations to significantly reduce the blade deflec-
tion amplitudes. However, this controller is by
far the best solution, considering its better perfor-

mance and the fact it is able to ensure asymptotic
stability of the closed-loop system.

4.5 Feedforward controller

In the previous sections, the unbalance was not
included in the numerical simulations. Thus, the
effects of the unbalance is now evaluated, together
with the feedforward compensator, which was de-
signed to cope with this known disturbance. The
system has been simulated using the same ini-
tial condition as in the previous sections. Fig-
ure 6 shows the time response of the hub in the
x-direction and of the first blade tip deflection
for the open-loop system without the unbalance
(dashed-line), the unbalanced open-loop system
(solid-line), and the unbalanced open-loop system
with the feedforward controller (circle-line).

Figure 6: Hub displacement xh and of the first
blade tip deflection d1.

The effect of the of the unbalance is very ev-
ident, especially, in the hub response, giving a
far different response. However, the implemented
feedforward controller is able to completely cancel
out the unbalance, giving a perfect match to the
response of the unbalanced system. This was pre-
dicted in Sec. 3.6, meaning, that the pseudoinverse
used is indeed effective.

5 Conclusion

The paper has proposed a technique to design
a controller to attenuate the vibration of cou-
pled rotor-blade systems via shaft actuation. An
analytical model describing the dynamics of the
rotor-blade system has been presented. A periodic
modal decomposition method has been applied
to decouple the system matrix. Four controllers
have been implemented: a proportional derivative
controller; an LQR controller based on a single
frozen model; an LQR controller based on multi-
ple frozen models; and a periodic LQR controller,
which is the main contribution of this paper. The
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performance of the designed controllers have been
verified through numerical simulations. The peri-
odic LQR controller shows a superior performance
compared to the others controllers. Moreover, the
proposed periodic LQR controller is able to guar-
antee closed-loop stability.
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