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Abstract. In this work we deal with piecewise smooth singularly perturbed systems

ẋ =

{
F (x, y, ε) if h(x, y, ε) ≤ 0,
G(x, y, ε) if h(x, y, ε) ≥ 0,

εẏ = H(x, y, ε). (1)

In system (1), ε ∈ R is a non-negative small parameter, x ∈ Rn and y ∈ R denote the slow
and fast variables, respectively, and F , G, h and H are Cr maps which vary differentially
with respect to ε, with r ≥ 1. We study the Sotomayor–Teixeira regularization of periodic
orbits of system (1) with ε = 0 and with ε > 0 sufficiently small. More specifically, we
establish the persistence of periodic orbits with sewing or with sliding of system (1) with
ε = 0 and with ε > 0 for their respective regularized systems.
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1 Introduction

Many systems of relevance to applications are modeled using piecewise smooth dyna-
mical systems. The study of such systems has, in recent years, established an important
frontier between Mathematics, Physics and Engineering. They appear in various situati-
ons like mechanical systems with dry friction or with impacts, in control theory, electronic,
economics, medicine and biology. See [4] for a general scope of the matter.

In our approach Filippov convention [6] is considered. Filippov systems are systems
modeled by different smooth ODEs (ordinary differential equations) in different open do-
mains separated by smooth discontinuity boundaries. In the simplest case the phase space
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is composed by two domains such that for each domain a different ODE governs the
dynamics, namely

ẋ = Z(x) =

{
F (x), if h(x) ≤ 0,
G(x), if h(x) ≥ 0.

(2)

In equation (2), F and G are Cr vector fields defined on the open set U ⊂ Rn, with r ≥ 1,
and h : U → R is a smooth function having 0 as a regular value. The common boundary
Σ = {h(x) = 0} between the domains Σ− = {h(x) ≤ 0} and Σ+ = {h(x) ≥ 0} is called
switching manifold.

An important question with regards to investigations of the dynamics of systems (2)
is the effect of singular perturbations. In this work we investigate how the dynamics of
piecewise smooth systems is affected by singular perturbation. For that let us consider
slow–fast systems of the form (1). It is worth to say that some papers have contributed
to the study of this issue, see for instance the recent articles [1–3] and [7].

In this work we study the Sotomayor–Teixeira regularization of periodic orbits of sys-
tem (1) with ε = 0 and with ε > 0 sufficiently small. We show that periodic orbits with
sewing or with sliding of system (1) with ε = 0 and with ε > 0 are persistent for their
respective regularized systems.

2 Preliminaries

In this section we present some basic facts about Filippov systems, the regularization
process and piecewise smooth singularly perturbed systems.

2.1 Filippov Systems

We use the notation Fh(p) = F (p) · ∇h(p) for the scalar product in Rn. For k ≥ 2, we
define inductively F kh(p) = F (F k−1h)(p). On the switching manifold Σ of system (2) the
following open sets are distinguished: The sewing region Σc = {p ∈ Σ : [Fh(p)][Gh(p)] >
0}; the escaping region Σe = {p ∈ Σ : Fh(p) < 0, Gh(p) > 0} and the sliding region
Σs = {p ∈ Σ : Fh(p) > 0, Gh(p) < 0}. If a point of the phase space which is moving in
an orbit of Z = (F,G) falls onto Σc then it crosses Σc over to another part of the space.
In Σe and Σs, the definition of the local orbit is given by the Filippov convention [6]. We
consider the vector field ZΣ which is the linear convex combination of F and G tangent
to Σ, that is

ẋ = ZΣ(x) =
Fh(x)G(x)−Gh(x)F (x)

(F −G)h(x)
. (3)

We call ZΣ the sliding vector field associated to the Filippov system (2), independently
whether it is defined in the sliding or escaping region. See Figure 1. Solutions of Z = (F,G)
through points of Σe ∪ Σs follow the orbit of ZΣ.

Tangency points are points where one of the two vector fields F or G is tangent to Σ.
They are characterized by p ∈ Σ such that Fh(p) = 0 or Gh(p) = 0. Tangency points
include the case F (p) = 0 or G(p) = 0, that is, when one of the two vector fields has an
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equilibrium point at Σ. We say that p ∈ Σ is a regular point if p ∈ Σc or p ∈ Σs ∪Σe and
ZΣ(p) ̸= 0. The points of Σ which are not regular are called singular.

p

F (p)

G(p)

ZΣ(p)

Σ

Figura 1: The sliding vector field ZΣ.

2.2 The regularization process

The regularization process was introduced by Sotomayor and Teixeira in [9]. It is
based in replacing the two adjacent vector fields by a λ–parametric vector field built
as a linear convex combination of them in a λ–neighborhood of the switching manifold.
More specifically, consider the non–smooth system (2). The regularization consists in an
1-parameter family of smooth vector fields Zλ on U ⊆ Rn such that for each λ0 > 0,

(i) Zλ0 is equal to G in all points of Σ+ whose distance to Σ is bigger than λ0.

(ii) Zλ0 is equal to F in all points of Σ− whose distance to Σ is bigger than λ0.

A C∞ function φ : R → R is a transition function if φ(s) = −1 for s ≤ −1, φ(0) = 0,
φ(s) = 1 for s ≥ 1 and φ′(s) > 0 for s ∈ (−1, 1).

The regularization of system (2) is the one–parameter λ family given by

ẋ = Zλ(x) =
G(x) + F (x)

2
+ φ

(
h(x)

λ

)
G(x)− F (x)

2
, (4)

where φ is a transition function. Denote φλ = φ(h(x)/λ). The regularization zone is the
region around the switching manifold Σ given by φ−1

λ (−1, 1).

2.3 Piecewise smooth slow–fast systems

For each ε ≥ 0 we denote by Σε the switching manifold of (1), i.e. Σε = {h(x, y, ε) = 0}.
The set S0 := {H(x, y, 0) = 0} is named critical manifold of the slow–fast system (1). Here
we are supposing that Σ0 and S0 are in general position. We will assume thatH(x, y, ε) = 0
can be solved by y = fε(x), for all ε ≥ 0. For ε = 0 in (1) we have the reduced problem

ẋ =

{
F̃ (x) if h̃(x) ≤ 0,

G̃(x) if h̃(x) ≥ 0,
0 = H(x, y, 0), (5)

where F̃ (x) = F (x, f0(x), 0), G̃(x) = G(x, f0(x), 0) and h̃(x) = h(x, f0(x), 0). The reduced
problem (5) is a dynamical system defined on the manifold S0. We will use the notations
Σc
ε, Σ

e
ε and Σs

ε to denote the sewing, escaping and sliding regions associated to the Filippov
slow–fast system (1), respectively, for all ε ≥ 0.
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Definição 2.1. Let K ⊂ S0 be a compact set. We say that K is normally hyperbolic if
Hy(x, y, 0) is nonzero, for all (x, y) ∈ K.

The following definition was given in [8].

Definição 2.2. Let Γ be a periodic orbit with sewing or with sliding of system (5). We
say that Γ is hyperbolic if

• Γ is a periodic orbit with sewing and η
′
(p) ̸= 1 where η is the first return map defined

on a segment N with p ∈ N t Γ;

• Γ is a periodic orbit with sliding and all sliding arcs of Γ are either sliding or escaping.

3 Statement of the main result

In what follows we define the regularization of systems (1) and (5). The regularized
systems of (1) and (5) are given respectively by

ẋ =
G+ F

2
+ φ

(
h

λ

)
G− F

2
, εẏ = H, (6)

ẋ =
G̃+ F̃

2
+ φ

(
h̃

λ

)
G̃− F̃

2
, H = 0, (7)

where φ is a transition function and all the functions in (6) are evaluated at (x, y, ε) and
all the function in (7) are evaluated at (x, f0(x), 0).

We state below a result that ensures the persistence of hyperbolic periodic orbits with
sewing or with sliding of the reduced problem (5) for the regularized systems (6) and (7).

Teorema 3.1. Consider a Cr family like (1), with x ∈ R2 and r ≥ 1. Let Γ ⊂ S0 be a
hyperbolic periodic orbit with sewing or with sliding of the reduced problem (5). Then:

(a) For each small λ > 0 the regularized system (7) has a hyperbolic limit cycle Γλ,0,
such that Γλ,0 → Γ when λ → 0, according to Hausdorff distance.

(b) If Γ is normally hyperbolic, then for small λ, ε > 0, the regularized system (6) has
a hyperbolic limit cycle Γλ,ε, such that Γλ,ε → Γ, when (λ, ε) → (0, 0), according to
Hausdorff distance.

Theorem 3.1 is proved in Section 4. It is illustrated by the next example.

Example. Consider the following piecewise slow–fast system in R3

ẋ1 =

{
1 + 200(x2 − x1), if x1 ≤ 0

−1 + 200(x2 − x1), if x1 ≥ 0
, ẋ2 = 100(x2 − x1), εẏ = y. (8)

The corresponding reduced system

ẋ1 =

{
1 + 200(x2 − x1), if x1 ≤ 0

−1 + 200(x2 − x1), if x1 ≥ 0
, ẋ2 = 100(x2 − x1), y = 0 (9)
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correspond to a class presented by Sieber and Kowalczyk in [7, p. 45] taking θ = −1 and
an affine change of coordinate. According the authors this class has a hyperbolic periodic
orbit with sewing Γ. By Theorem 3.1 the regularized system of (9) given by

(ẋ1, ẋ2) =
(
200(x2 − x1) + φ

(x1
λ

)
, 100(x2 − x1)

)
, y = 0 (10)

has a hyperbolic limit cycle Γλ,0 for small values of λ > 0 (see Figure 2) and the regularized
system of (8) given by

(ẋ1, ẋ2, ẏ) =
(
200(x2 − x1) + φ

(x1
λ

)
, 100(x2 − x1),

y

ε

)
(11)

has a hyperbolic limit cycle Γλ,ε for small values of λ, ε > 0 where φ is a transition function,
see Figure 2.

(A) x2

x1
Γ

(B) x2

x1

Γλ,0

0.0100.010− 0.010− 0.010

− 0.005− 0.005

00

00
00

0.0050.005

0.0100.010

0.0100.010

− 0.010− 0.010

(C)

x2x1

y

Γλ,ε

Figura 2: Figure (A) illustrates the periodic orbit with sewing Γ of the reduced system (9). Figure (B)
illustrates the limit cycle Γλ,0 of the regularized system (10) with λ = 0.001 and φ(s) = 2

π
tan−1(s/λ) and

Figure (C) illustrates the limit cycle Γλ,ε of system (11) with λ = 0.001, ε = 0.01 and φ(s) = 2
π
tan−1(s/λ).

4 Proof of Theorem 3.1

Proof of item (a). Suppose that Γ is a periodic orbit with sewing. We can suppose without
loss of generality that it is formed by two connected components Γ0 and Γ1. Let p0, p1 ∈
Σ0 ∩ Γ, T0 and T1 be transversal sections to Γ0 and Γ1 at p0 and p1, respectively. Denote
by η0 : T0 → T1 and η1 : T1 → T0 the half–return maps defined by the flows of F̃ (x) and
G̃(x), respectively. Define the return map η = η1 ◦η0. The point p0 ∈ T0 is the fixed point
of η which corresponds to the periodic orbit Γ. Suppose that Γ is attractor, i.e. η′(p0) < 1.
The case in which Γ is repulsive is similar. Take a orientation in T0 and fix the origin at p0.
Let q0 and q1 be points of T0 such that q0 < p0 < q1. Thus we have that q0 < η(q0) < 0 and
0 < η(q1) < q1 because Γ is attractor. Let W be a tubular neighborhood of Γ, as Figure
3-(A) shows. Note that by construction the orbits that cross the arcs q0η(q0) and q1η(q1)
enter in W. Consider small λ0 such that ηλ(q0) > q0 and ηλ(q1) < q1, where ηλ : T0 → T0

is the return map of regularized system (7) with 0 < λ < λ0. Denote by Wλ the region
formed by orbits of system (7) by q0 and q1 and by arcs q0ηλ(q0) and q1ηλ(q1) on T0. By
construction the orbits of system (7) enter in Wλ. Thus the Poincaré–Bendixson Theorem
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ensures the existence of a periodic orbit Γλ,0 of regularized system (7) in Wλ because there
are no equilibrium points in Wλ.

Now suppose that Γ is a periodic orbit with sliding. For simplicity we suppose that Γ
has only one fold point. Let T1, T2, T3 and T4 be transversal sections to the periodic orbit
Γ, as shown in Figure 3-(B). Let p0 ∈ Γ ∩ T3 and q0 and q1 be points on T3, such that
q0 < p0 < q1. We can choose q0 and q1 sufficiently near to p0 such that the orbits of F̃
departing of q0 and q1 cross T4 and meet the sliding region. For positive time the orbit by
q1 meets T1 at a point q2 = (a2, b2) and for negative time the orbit by q1 meets T2 in a point
q3 = (a3, b3). Take a4 = min{a2, a3} (in Fig. 3-(B) we have a4 = a3) and a5 > 0 such that
the orbits of F̃ by x = (x1, x2) with x1 < a5 meets the sliding region. Consider the points
(0, a6) and (0, a7) on the intersection of the orbit by q0 and Σ0. Consider the tubular
neighborhood W formed by the orbit by q1 between T1 and T2, by segment (a3, b2)(a2, b2)
on T1, by lines x1 = a4 and x1 = a5 between T1 and T2, by orbit by q0 bounded by Σ0

and by segments (0, a6)(a5, b3) and (0, a7)(a5, b2). Take λ0 > 0 such that −λ0 ≥ a4 and
λ0 ≤ a5, with 0 < λ < λ0. Thus the sections T3 and T4 are out side of regularization
zone and the flow of regularized system (7) enters in W. Again by Poincaré–Bendixson
Theorem the regularized system (7) has a periodic orbit Γλ,0. We can prove in details that
the periodic orbit Γλ,0 is hyperbolic. See for instance the references [8]. Making λ → 0 we
conclude that Γλ,0 → Γ.

(A)

W

q0

p0

q1

η(q0)

η(q1)

T0

T1

Γ

x
=

a
54

x
=

a
1

1

(B)

W Γ

p0

q0

q1

q3

q2
T1

T2

T3

T4

Figura 3: Figures (A) and (B) illustrate periodic orbits with sewing and with sliding and their respective
tubular neighborhoods W. For simplicity we consider h(x, y, ε) = x1.

Proposição 4.1. If under the hypothesis of item (a) of Theorem 3.1 we add Γ normally
hyperbolic then Γλ,0 is normally hyperbolic for small λ > 0.

Proof. Suppose that Γ is normally hyperbolic, i.e. Hy(x, y, 0) ̸= 0 for all (x, y) ∈ Γ. Thus
there exists a tubular neighborhood V of Γ such that Hy(x, y, 0) ̸= 0. If it necessary we
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can reduce the parameter λ such that the limit cycle Γλ,0 belongs to V and hence the
result follows.

Proof of item (b). By item (a) system (7) has a hyperbolic limit cycle Γλ,0 for small λ > 0.
Besides if Γ is normally hyperbolic then by Proposition 4.1 the limit cycle Γλ,0 is normally
hyperbolic for small λ > 0. As system (7) is exactly the reduced problem associated with
the smooth slow–fast system (6), we can use Fenichel’s Theorem ( [5]) in order to conclude
that system (6) has a hyperbolic limit cycle Γλ,ε for small λ, ε > 0. Moreover, Γλ,ε → Γ
when (λ, ε) → (0, 0), according to Hausdorff distance.
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