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Abstract.

In areas where resources are located in patches or discrete locations, human dispersal is more
conveniently modeled, in which the population is divided into discrete patches. In this work
we develop a general discrete model to analyze the spread of Dengue disease. In the process
of mathematical modeling we take into account the human populations and the circulation
of a single serotype of dengue mosquitoes. The movements of susceptible, infected and
recovered humans between all patches is considered. Aquatic phase with differents carrying
capacities is considered within the patches. In this formulation an arbitrary number of
patches can be used to simulation of the spread of dengue disease. Numerical results was
performed in order to show the applicability of this methodology for the dengue disease
problem.
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1 Introduction

The simple approach for the analysis of the spread of infectious diseases was initially
studied in [1–3]. In this approach, the population in which a pathogenic agent is active
can be divided into three distinct compartments corresponding to different epidemiologi-
cal status: Susceptible (S), Infected (I) and Recovered (R), i.e., the classical SIR model.
Removed individuals can be return to the susceptible compartment and then the SIRS is
obtained. The model involves the dynamic interactions between humans and mosquitoes
and takes into account human mobility as an important factor of disease spread. Humans
are the main amplifying host of the virus. Dengue virus circulating in the blood of vi-
raemic humans is ingested by female mosquitoes during feeding. The virus then infects
the mosquito midgut and subsequently spreads systemically over a period of 8-12 days.
After this extrinsic incubation period, the virus can be transmitted to other humans dur-
ing subsequent probing or feeding [4]. In the next sections, we describe a discrete model
to analize the dynamic of the dengue disease where the movements of humans (susceptible
and infected) has a important role when patches are considered.
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2 Mathematical Epidemic Models

Due to population dispersal [5] an epidemic model was proposed to describe the dy-
namics of disease spread among patches. Extending the classical mathematical epidemic
model using pathways, we can analyze how different transmission pathways affect the dy-
namic of the dengue disease. Then, the new methodology k − ASIRSI proposed here
consist in extend the classical mathematical model SIRSI [8,9], for an arbitrary number
of k-patches and also considering a aquatic phase compartment. The state variables def-
inition for the discrete model can be found in Table (1). The respectives parameters are
shown in Table (2). Considering all assumptions, the corresponding model is given by the
System (1), together Nhj = Shj + Ihj + Rhj , for j = 0, · · · , k, where k is the number of
patches.

Table 1: States variables definition for the discrete model (1).
A Aquatic phase
Sh Susceptible human density
Ih Infected human density
Rh Recovered human density
Sv Susceptible vector density
Iv Infected vector density

Table 2: Parameters for the discrete model (1).
µA per capita aquatic mortality rate
µh per capita human mortality rate
µv per capita mosquito mortality rate
C carrying capacity related to the amount of available nutrients and space
φ is the intrinsic oviposition rate
α proportion of mosquito becoming susceptible
b proportion of the effective bite that transmite infection
γ recovery rate of humans
βh vector-human probability of transmission
βv human-vector probability of transmission
Nh Total number of humans
Kij humans movement rate between compartment i to j
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(1)

3 Numerical Simulation

To show the ability of the code in simulate the dynamic of dengue disease involving k

discrete patches, we performed simulations for k = 1, k = 2 and k = 5. The respective
matrix human movement rate, K, used in the 2−ASIRSI and 5− ASIRSI models are
given by a random process. In the particular case 1−ASIRSI model, K = 0. The ordinary
differential equations of the system (1) was discretized by a forward first-order scheme.
Higher-order discretization schemes can be considered, but yielding no improvement. The
parameters used for all simulations are shown in the Tables (3).

Table 3: Parameters of simulation (days−1).
C µA µh µv φ α b γ

13 [7] 0.0583 [10] 0.457× 10−4 [8] 0.25 [8] 6.353 [10] 0.121 [10] 1.0 [8] 0.167 [8]

βh βv

0.4 [8] 0.4 [8]

Table 4: Initial conditions for the 5−ASIRSI model for all patches j = 1, · · · , k = 5.
1 2 3 4 5

A 100 0 0 100 0.0001
Sv 2000 0 2000 2000 0
Iv 0 0 10 0 0
Sh 90000 100000 100000 100000 100000
Ih 2000 0 0 0 0
Rh 0 0 0 0 0

The dynamic of 1−ASIRSI model show that in the presence of the human infected in
the patch, the mosquito susceptible population becomes infected, as shown in Figure (1).
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Also, the low initial density of aquatic phase increase very fast, Figure (2). Figures (3)-(4)
show the dynamic of all populations of the 2−ASIRSI model. In this dynamic, due to the
presence of mosquito infected in the patch 1, the human susceptible population becomes
infected in this patch 1. Because of the human mobility considered between the patches,
the human infected population can move to 2 from 1 and the susceptible mosquitoes in this
patch 1 becomes infected. Finally, the human population infected increase in the patch 2
until recover to. In order to show the ability of the code in simulate in k number of discrete
patches, we simulated the 5 − ASIRSI model. Table (4) show the initial conditions for
all patches j = 1, · · · , k = 5. Figures (5) (a) and (b) show the dynamics of humans and
mosquito infected populations, respectively. Figure (6) show the dynamic behavior of all
populations within all patches. It is important note the effect of human mobility between
all patches and their impact in the infection of both susceptible populations.
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Figure 1: Dynamic of the infected populations within the patch in T = 120 days. Initial
conditions: (a) Ih1(0) = 200; (b) Iv1(0) = 0.
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Figure 2: Dynamic population of 1 − ASIRSI model. Parameters: A = 0.0001; Nh =
10000, Ih = 200, Sv = 2000; T= 120 days; dt = 0.01; K = 0; k = 1.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 2, 2015.

DOI: 10.5540/03.2015.003.02.0016 020016-4 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.02.0016


5

0 5 10 15 20 25 30
0

50

100

150

200

250

Ih
1 

an
d 

Ih
2

(a) Humans

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Iv
1 

an
d 

Iv
2

(b) Mosquitoes

Figure 3: Dynamic of the infected populations within the patches. T = 30 days. Initial
conditions: (a) Ih1(0) = Ih2(0) = 0. (b) Iv1(0) = 200 and Iv2(0) = 0.
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Figure 4: Dengue disease spread using the 2−ASIRSI model. Parameters: A1(0) = 100,
A2(0) = 0.0001, Sv1(0) = 2000; Nh1 = Nh2 = 10000; Total time T= 30 days; Time-step
dt = 0.01; k = 2.
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Figure 5: Dynamic of the infected populations within the patches.
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Figure 6: Dengue disease spread using the 5 − ASIRSI model. Parameters: Initial
conditions for all state variables are given in Table (4); Total time: T= 30 days; Time-
step: dt = 0.01; Number of patches: k = 5.

4 Conclusions

The main conclusions that can be drawn are:

1. the methodology proposed here allowed the use of an arbitrary number of patches;

2. due to the infected human populations mobility the susceptible mosquito population
became infected.

3. the human movement rate is an important parameter and needs to be estimated in
order to improve reality in this computational investigation.
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[10] R. C. A Thomé, H. M. Yang, L. Esteva, Optimal control of Aedes aegypti mosquitoes
by the sterile insect technique and insecticide, Mathematical Biosciences, Elsevier,
vol. 223, 12-23, (2010)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 2, 2015.

DOI: 10.5540/03.2015.003.02.0016 020016-7 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.02.0016

