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Abstract   The goal of the present paper is to study orbital coplanar maneuvers between circular orbits. The control available to 
perform this maneuver is the application of several impulses. The solutions has searched that minimize the total variation of velocity 
that has to be used to implement the impulses calculated by the algorithms. The transfer time has obtained, but it isn’t considered 
as an optimization parameter. A genetic algorithm is used to solve the problem, combined with the Lambert´s Problem associated 
with those transfers. With the goal of making comparisons, a numerical algorithm has developed to solve the same transfers, but 
considering a low thrust maneuver. A propulsion system provides large savings in consumption, but with an expense of longer 
maneuvers. 
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1    Introduction 

The Genetic algorithms (GA) are heuristic methods 
that search for optimum solutions. It has applications 
in several areas in order to optimize. Functions, within 
a specific space domain, are determined by applying 
methods based on the Darwinian evolution theory. In 
this situation, a set of possible solutions of the prob-
lem considered here may be considered as a popula-
tion. Then, applying methods of crossover and muta-
tion among individuals, the population evolves and 
tends to produce better individuals that represent bet-
ter the solutions of the problem. The key point in this 
approach is to specify a measurement that can define 
the best individuals. Several missions can benefit from 
the optimization algorithm used in this work.  

The main ones are: transfer with free time (to 
change the orbit of the space vehicle without re-
strictions to the time required for the execution of the 
maneuver); “Rendezvous” (when one desires that the 
space vehicle reaches and remains on the side of an-
other space vehicle); “Flyby” (when it is desired to in-
tercept another celestial body, however without the 
objective of re-maining next to it); “Swing-By” (when 
a close approach with a celestial body is used to gain 
or lose energy, velocity and angular momentum). 
Studying optimal space maneuvers that searches the 
minimum fuel consumption for interplanetary mis-
sions is an important field of research for development 
of space technologies. The problem of transferring a 
spacecraft between two coplanar circular orbits with 
free time in a central force field was studied, obtaining 
as a solution a four-impulsive elliptical transfer orbit 
using to genetic algorithm (Santos et al, 2012a and 
2012b). In this particular case transfer of a spacecraft 
from one body back to the same body (Santos et al, 
2012b). The literature is extensive with respect to the 

problems involving transfer orbits and optimal space-
craft maneuvers (Prussing, 1979; Santos et al, 2011, 
Santos et al, 2012a and 2012b; Santos et. al, 2013).  

2   The genetics algorithm 

The genetic algorithm is a stochastic global search 
method inspired on the natural genetic and biological 
evolution. The genetic algorithm operates on a popu-
lation of potential solutions by applying the principle 
of survival of the fitness to produce better and better 
approximations to find the best solution. 

At each generation, is created new individuals 
by the process of selecting individuals according to 
their level of fitness in the problem domain and breed-
ing them together using operators inspired in natural 
genetics. So, the idea is to create individuals that are 
better suited to their environment than the individuals 
that were on the previous generation. 
In this case, a generation is one iteration with a certain 
quantity of evaluation of the objective function. In 
each evaluation, is applied the genetic operators, in-
spired in natural genetics. For the representation, the 
individuals are created as a chromosome where each 
one is considered a possible solution for the problem. 

Genetic algorithms differ from traditional tech-
niques by using probabilistic rules, not deterministic 
and by working with population of individuals, differ-
ent of other methods that work from a single point. 
This is a great advantage, because by maintaining a 
population with good individuals, the probability of 
reaching a false peak is reduced. 

This algorithm introduces many new concepts, 
including the fitness of a chromosome that represents 
the quality of the individual at the environment, the 
selection probability of an individual, the crossover 
operator, the mutation and the epidemic operators to 
introduce random perturbations in the search. In the 
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Figure 1 is demonstrated an analogy to help the under-
standing the inspiration between genetic and computer 
languages. 
 

 
 
Figure 1. Demonstration of a crossing-over opera-
tor between parents. 

2.1. Crossing-Over 

The crossing-over operator is used to create new indi-
viduals from parents. This new individual is created 
from a random cut-off dividing the parents in two 
parts, having the same or different size. The first son 
consists on the left part of the father with the right part 
of the mom and the second son consists on the right 
part of the father with the left part of the mom. In the 
Figure 2 is demonstrated this schema. 

 
Figure 2. Demonstration of a crossing-over opera-
tor between parents. 

2.2. Mutation 

The mutation operator is used to introduce random 
perturbations in the search, having a low occurrence 
probability, around 0.5%. This perturbations is cre-
ated by generating a random number between 0 and 1, 
if this number is smaller than the occurrence probabil-
ity, the mutation operator works, flipping randomly a 
bit in the chromosome, if not, the mutation operator is 
ignored.  

2.3. Epidemic 

The epidemic is another operator used to introduce 
random perturbations in the search, having a very low 
occurrence probability, around 0.01%. This perturba-
tions is created by generating a random number be-
tween 0 and 1, if this number is smaller than the oc-
currence probability, the epidemic operator works, 
killing a random part of the population and creating 
new individuals to occupy the environment (Figure 3). 

Figure 3.  Epidemic killing the population. 

2.4. Function Objective 

Comparisons are made fitness of solutions to decide 
which should be propagated to the next generation. 
Normally fitness is directly related to the solution ob-
jective value, with the better objective value indicat-
ing the higher fitness. When the Genetics Algorithm 
(GA) procedure calls your function objective, it passes 
an array in the first parameter that specifies the se-
lected solution, which is referred to as the selection 
parameter. The selection parameter must not be al-
tered in any way by your function objective.  

The fitness of each individual should be com-
puted using the five data that define the problem 
(��, ��, ��, ��, Δ�, the first being unit because of the 
normalization) and the three genes (��, Δ�, 	
	that 
characterize the individual. One obtains, in sequence: 
the true anomaly of the arrival point ��  ���� � ∆� ( 1 ) 

the radii of the departure and arrival point are given 
by 

��  ���1 � ���
1 � ��cos�� ( 2 ) 

��  ���1 � ���
1 � ��cos�� ( 3 ) 

the distance between P1 and P2, on each arc, is 

 �  ���� � ��� � 2����cos ∆� ( 4 ) 

the semi-major axis of the transfer orbit is 

  �min  ��������  ( 5 ) 

the distances c1 and c2 of P1 and P2 from the vacant 
focus F2 can be specified by the equations 

  ��  2� � �� ( 6 ) 

The Figure 4 shows a description of several important 
variables. 

 
 

Figure 4 - Geometry of the Problem and the angles 
involved in the problem. 
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The angles is calculated by 

	  arcos #��� � ��� � ��2��� $ ( 7 ) 

	� = arcos #��� − ��� + ��2��� $ ( 8 ) 

the eccentricity of the transfer orbit is given by 

�% = ���� + ��� − 2����cos&22�%  ( 9 ) 

the true anomaly '� of the P1 on the transfer orbit is 

 '� = arcos ()*(��+*�)�����+* ,  ( 10 ) 

the argument of perigee for the transfer orbit is 

   � = �� − '�  ( 11 ) 

which is the angle between the perigees of the transfer 
and the initial orbits. 
The geometry of the maneuvers has been measured. 
One calculates the radial and the tangential compo-
nents of the spacecraft velocity before and after both 
impulses, what permits the computation of the total Δ-, which has been assumed as the measure of the in-
dividual fitness. Non-dimensional variables are used 
in the code (Santos et al, 2012a and 2012b) They are 
shown below.  

� = �̃�/� ( 12 ) 

0 = 0/
1 2�/�

 
( 13 ) 

The distances and velocities (reference) are the semi-
major axis of the initial orbit and the velocity on a cir-
cular orbit with the same energy as the initial one.  The 

reference time is therefore  1)/�34 . 

 
3  Numerical solutions 

 
Genetic algorithms are iterative schemes where, in 
each iteration, the population is modified, using the 
best features of the elements of the previous genera-
tions. They are subjected to five basic operations to 
produce better results: 

To apply the genetic algorithms in orbital maneu-
vers, an impulsive hypothesis is used for the engine of 
the spacecraft. It means that the velocity is assumed to 
change in zero time and a sequence of keplerian orbits 
represents the motion of the spacecraft. More details 
about this type of maneuver can be seen (Santos et al, 
2012a and 2012b) 

Then, the optimization method using genetic algo-
rithms was used and several missions were simulated. 
Some of them are shown in more details, with initial 
radii ro = 1 and final radius rf = 2 and rf = 3. The results 

are shown in Table 1 and Figures 5 to 8. 
 

Table 1 - Maneuvers between coplanar circular orbits showing 
the values of the ∆V. 

Nº 1 2 3 4 

Simulation 
(ro=1) rf = 2 rf = 3 rf = 1.2 rf = 1.5 

∆∆∆∆V1111    0.023829 0.000016 0.035322 0.007858 

∆∆∆∆V2222    0.144021 0.224097 0.017854 0.000000 

∆∆∆∆V3333    0.011422 0.002581 0.068397 0.088876 

∆∆∆∆V4444    0.108731 0.178097 0.074701 0.084990 

∆∆∆∆VT 0.288004 0.404792 0.196275 0.181724 

Hohmann        
∆∆∆∆V    

0.284457 0.393847 0.086947 0.181645 

 

In particular, optimal rendezvous between two co-
planar orbits, with maneuvers using up to 4 burns, 
were used to generate those results. Rendezvous is a 
maneuver where a space vehicle needs to encounter a 
second one that is in a different orbit. Some more in-
formation regarding rendezvous maneuver can be 
seen in Santos and Prado (2012b). Figure 3 shows the 
states of the genetic algorithm and its evolution after 
500 evaluations of the objective function. The genetic 
algorithm provided satisfactory solutions when com-
pared with the solutions of the literature. The popula-
tion comprises of 500 individuals and up to 250 gen-
erations of individuals in those simulations. Maneuver 
2 shows an interesting feature of the algorithm. Alt-
hough the specified number of impulses was four, the 
algorithm found a better solution that uses only three 
impulses, so it generated an impulse with zero cost. 

 

 
Figure 5. Four-burn orbital rendezvous, simulation 1: 

r0 =1, rf = 2 
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Figure 6. Four-burn orbital rendezvous, simulation 

2: r0 = 1, rf = 3 
 

 
 

Figure 7 - The variables of the problem and the best 
fitness, simulation 1, with 4 burns. 

 

After that, a different situation was assumed to test 
the Genetic Algorithm. Intermediate constraints were 
added to force the spacecraft to pass by several inter-
mediate orbits before reaching the final desired one. 
To solve the problem, the engine was assumed to be 
also impulsive, but the number of impulses was in-
creased to allow the satisfaction of the intermediate 
constraints (passing by specific orbits) (Table 2, Fig-
ure 7 and 8).  

Table 2 - Septa-burn orbit transfers 

 r0=1, e = 0 
rf=3 

Keplerian transfer orbits 

 a e ω 

∆∆∆∆V1 0.044278 1.099522 0.090514 6.278946 

∆∆∆∆V2 0.000726 1.101127 0.089776 0.010485 

∆∆∆∆V3 0.149698 1.599995 0.250019 3.132906 

∆∆∆∆V4 0.512103 1.854493 0.474787 2.206169 

∆∆∆∆V5 0.000000 1.854493 0.474787 2.206169 

∆∆∆∆V6 0.026218 2.091447 0.530214 2.270242 

∆∆∆∆V7 0.223406 final  circular orbit 

∆∆∆∆VT 0.956429    

 

These solutions differ from each other by inter-
mediate constraints that we used, so the solutions have 
different transfer times and the trajectories of the 

spacecraft passes by different regions of the space, to 
be able to accomplish different goals for the mission. 

 
Figure 8. Seven-burn orbit transfers. r0 = 1 (Earth). rf  
= 5.202803 (Jupiter). Solution 1. with 7 burns and 

∆VT = 1.407184 
 

Then we implemented a low thrust algorithm. This 
type of maneuver assumes that the engine can de-
liver a continuous but low thrust to the spacecraft. 
Similar problems are studied in several papers in 
the literature, like shown in Santos and Prado 
(2012b). The main advantage is that it consumes a 
lot less fuel, but at an expense of larger times for 
the maneuver as well as more complex implemen-
tation of the hardware. The choice of which tech-
nique to use depends on the mission requirements 
and on the engines available for the spacecraft. 

In the present formulation, the main ideas shown 
in Biggs [apud Santos, 2012b] are used and to 
avoid singularities in the equations of motion, the 
following variables are used: 

5�  6��1 − ��)2  (17) 

5�  =  ��78(ω − 9) (18) 5:  =  �8;<(ω − 9) (19) 5� =  (=>�? @7<8>A�B)/AD (20) 5E =  F (21) 

5G  =  �78 H;2I �78 HΩ + 92 I (22) 

5J  =  8;< H;2I �78 HΩ − 92 I (23) 

5K  =  8;< H;2I 8;< HΩ − 92 I (24) 

5L  =  8;< H;2I 8;< HΩ + 92 I (25) 

φ =  M + ω −  8 (26) 

where:  
a = semi-major axis; e = eccentricity; i = inclina-
tion; Ω = argument of the ascending node; ω = ar-
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gument of perigee; f = true anomaly; s = range an-
gle; µ =gravitational constant; m0 = initial mass of 
the spacecraft. 
In those variables, the equations of motion are: 

B5�B8  =  M� =  N;5�=� (27) 

B5�B8 = M� = N;OP(Q� + 1)�78(8)+ 5�RM�+ Q�=�8;<(8)S (28) 

B5:B8 = M: = N;OP(Q� + 1)8;<(8)+ 5:RM�− Q�=��78(8)S (29) 

B5�B8 = M� = N;Q�=(1 − 5�)5�T  (30) 

B5EB8 = ME = N;Q�(1 − 5�)AD5�  (31) 

B5GB8 = MG
= − N;=:P5J cos(8) + 5Ksin (8)R2  

(32) 

B5JB8 = MJ
= N;=:P5G cos(8) + 5Lsin (8)R2  

(33) 

B5KB8 = MK
= N;=:P5L cos(8) + 5Gsin (8)R2  

(34) 

B5LB8 = ML
= N;=:P5J sin(8) + 5Kcos(8)R2  

(35) 

Where: Q� =  1 +  5��78(8)  + 5:8;<(8) (36) 

N; =  (µ5��)PQ�:AD(1 − 5�)R (37) 

F, F1 , F2  and F3  are the forces generated by the thrust. 
given by: 

=W = =W� + =W� + =W: (38) 

= = X=WX (39) 

=� = =cos (Y)cos (Z) 
(40) 

=� = =sin (Y)cos (Z) (41) 

=: = =sin (Z) (42) 

where α is the angle between the perpendicular to 
the radius vector and the direction of the thrust and 
β is the out-of-plane angle of the thrust. The equa-
tions for the Lagrange multipliers are: 

B[�B8= − 4 ∑ [^M̂ + [�M� − [�M� − [EMEL̂_� 5�  
(43) 

B[�B8
= cos(8)Q� `3 b [^M̂ − [�M� − [EME

L
^_�

c
− N;[�=� − N;�78�(8)([�=� − [:=�)− −N;�78(8) sin(8) ([�=� + [:=�) 

(44) 

B[:B8 = 8;< (8)Q� `3 b [^M̂ − [�M� − [EME
L

^_�
c

− N;[:=�− N;�78(8)8;<(8)([�=�− [:=�)− N;8;<�(8)([�=� + [:=:) 

(45) 

B[�B8 = − d∑ [^M̂ − [�M� − [EMEL̂_� AD(1 − 5�) e (46) 

B[EB8 = 0 (47) 

B[GB8 = −N;=:P[J�78(8) + [K8;<(8)R2  (48) 

B[JB8 = N;=:P[G�78(8) − [L8;<(8)R2  (49) 

B[KB8 = N;=:P[G8;<(8) + [L�78(8)R2  (50) 

B[LB8 = −N;=:P[K�78(8) − [J8;<(8)R2  (51) 

The control to be applied to the spacecraft can also 
benefit from a substitution of variables to avoid nu-
merical problems. The following set of variables is 
used: >�  =  8D (52) 

>� = g8h − 8DicosgβDicos(αD) (53) 

>: = g8h − 8DicosgβDisin(αD) (54) 

>�  =  g8h − 8DisingβDi (55) 

>E =  α’ (56) >G = β’ (57) 

First order necessary conditions for the optimal 
problem can be written. For every instant of time, we 
have: 

8;<(α)  =  k�N′  (58) 

8;<(Z)  =  k:N′′ (59) 

�78(α)  =   k�N′  (60) 
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�78�Z
  =  N’N′′ (61) 

where: 

N’ =  ± 1k��  +  k�� (62) 

N” = ± �k��  +  k�� + k:� (63) 

k�  =  [�5� +  [�P5� + (Q� + 1) cos(8)R +  [:P5:  + (Q� + 1) sin(8)R (64) 

k�  =  [�Q�8;<(8)  − [:Q��78(8) (65) 

k: = - [G Pop�qr(r) � osr�t(r)R� +[JPXGcos(s) − XLsin(s)R +[KPXGsin(s) −  XLcos(s)R +[LPXJsin(s) − XKcos(s)R
(66) 

It is also possible to include constraints. Some of 
the most used ones can be represented by: S ( . ) ≥ 0 (67) (� − �∗)|� − �∗| = 0

 

(68) 

P�(1 + �) − �∗(1 + �∗)R|�(1 + �D) − �∗(1 + �∗)| = 0 (69) 

(; − ;∗)|; − ;∗| = 0 (70) 

(Ω − Ω∗)|Ω − Ω∗| = 0 (71) 

(ω − ω∗)|ω − ω∗| = 0 (72) 

The first one represents generic inequality con-
straints, while the other five is used to specify an orbit. 
After the implementation of this technique, the simu-
lations showed in Table 1 was considered again this 
time using this low thrust approach. The results are 
shown in Table 3. The consumptions are much lower, 
but it is necessary to have in mind that this situation is 
normal and constitute the most important characteris-
tics of low thrust engines. 

Table 3 - Maneuvers between coplanar circular orbits using low 
thrust. 

nº Simulation 
(ro=1) 

Consumption 

Low Thrust Maneuvers 

1 rf = 2 0.0886 
2 rf = 3 0.1271 
3 rf = 1.2 0.0831 
4 rf = 1.5 0.0865 

4   Conclusion 

From the analysis of the results obtained, the genetic 
algorithm implemented here showed that this tech-
nique can obtain results for the proposed four impul-
sive rendezvous maneuvers. It means that it can be 
used in real cases. The algorithm is able to find solu-
tions with a smaller number of impulses by making 
one or more of them with zero magnitude, if a maneu-
ver with a lower number of impulses can be used. 
 It also can generate results in situations where in-
termediate constraints of passing by specific orbits are 
included. In this case, several burns are required and 
the consumption is larger as expected. In the examples 
used here the number of impulses reached the number 
of seven and two solutions were found by considering 
two different sets of intermediate constraints. 

Then, a low thrust was used for the rendezvous 
missions. It shows the importance of this approach, 
which can find solutions with much lower fuel con-
sumption, although it has some disadvantages like 
more time required for the maneuvers and more com-
plex implementation of the hardware. 

Acknowledgments 

This work was accomplished with the support of São 
Paulo State Science Foundation (FAPESP) under 
Contracts 2009/16517-7 and INPE – Brazil.  

References 

Prussing. J. E.. "Geometrical Interpretation of the An-
gles α and β in Lambert's Problem". Journal of 
Guidance. Control. and Dynamics. Vol. 2. No.5. 
1979. pp. 442. 443. 

Santos, D.P.S., Prado, A.F.B.A.P, Colasurdo, G,. 
”Four-Impulsive Rendezvous Maneuvers for 
Spacecrafts in Circular Orbits Using Genetic Al-
gorithms”. Mathematical Problems in 
Engineering (Print), v. 2012, p. 1-16, 2012a. DOI: 
10.1155/2012/493507 

Santos, D.P.S., Prado, A.F.B.A.P,. “Minimum Fuel 
Multi-Impulsive Orbital Maneuvers Using Ge-
netic Algorithms”. In: 1st IAA Conference on Dy-
namics and Control of Space Systems, 2012, Porto 
- Portugal. IAA-AAS-DyCoSS1-11-01, 2012b. 

Santos, D.P.S., Prado, A.F.B.A.P, Colasurdo, G, Ren-
dezvous Maneuvers with Minimal ΔV. In: Recent 
Researches In Power Systems And Systems Sci-
ence, 2011, Penang, Malaysia. Icossse'11 Proceed-
ings Of The 10th WSEAS International Confer-
ence On System Science And Simulation In Engi-
neering, 2011. P. 38-42. 

Santos. D. P. S; Prado. A. F. B. A; Rocco., “The Study 
of the Asymmetric Multiple Encounters Problem 
and Its Application to Obtain Jupiter Gravity As-
sisted Maneuvers,” Mathematical Problems in En-
gineering, vol. 2013, Article ID 745637, 12 pages, 
2013. doi:10.1155/2013/745637. DOI: 
10.1155/2013/745637

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 1, N. 1, 2013.

DOI: 10.5540/03.2013.001.01.0093 010093-6 © 2013 SBMAC

http://dx.doi.org/10.1155/2012/493507
http://dx.doi.org/10.1155/2013/745637
http://dx.doi.org/10.5540/03.2013.001.01.0093



