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Abstract. This work is concerned with the numerical modeling of elastic wave propagation
in a medium constructed with functionally graded materials (FGMs). The FGM is charac-
terized by a gradual change in the material properties over the domain under consideration
and its application has been growing in some science and engineering areas. In contrast to
layered materials in which effects of reflection and refraction of waves still occur between
layers (a situation not always desirable), materials that possess a continuous variation of
their properties do not suffer from this drawback. Here, the time-domain elastodynamic
equations in FGMs are numerically solved by means of the spectral finite element method
based on the Gauss-Lobatto-Legendre points. Owing to the smooth transition of the mate-
rial properties over the domain makes the SFEM quite suitable for this type of problem since
material interfaces are not presented and, therefore, large elements can be easily employed.
Furthermore, the SFEM can be viewed as a higher-order finite element method (FEM) and
has been receiving great popularity for owning the FEM geometric flexibility in creating
meshes among other numerical features such as less dispersion errors and mass lumping.
At the end of the paper, a numerical example considering a FGM is presented, and the
results are compared with those furnished by the the equivalent homogeneous and layered
bi-material models to illustrate the difference of the models.
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1 Introduction

In the study of wave propagation problems, the low-order FEM is not usually preferred
due to its low accuracy, requiring a fine mesh to yield accurate results. Hence, although the
FEM has flexibility in creating meshes for any kind of geometry, finite difference methods
are still widely used for solving the elastic and acoustic wave equations especially in some
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areas such as the geophysics [4]. Recently, higher-order methods like the SFEM have been
introduced to simulate these phenomena [7]. The SFEM has some of the FEM properties,
and it is able to achieve the expected accuracy using few grid points per wavelength [6],
and differs from the classical higher-order FEM that presents some numerical problems
such as the occurrence of high oscillations, known as the Runge phenomenon [2].

Functionally graded materials are widely used in contemporary science due to their
distinct properties [8] and, thus, the development and study of numerical methods for
the solution of problems that adopt such type of material is of great importance. Hence,
the behavior of these materials in the context of elastic wave propagation problems is
investigated here using the SFEM and then compared with other material models.

2 Spectral finite element method in functionally graded ma-
terials

This section presents the equations used to model elastic wave propagation phenomena
in 2D, the system of equations obtained with the classic semi-discrete FEM formulation
and the main differences when the SFEM is employed, and the graded finite elements
formulation to model functionally graded materials.

2.1 Governing equations and the semi-discrete formulation

Let Ω ⊂ R2 be a bounded domain and I = (0, T ] ⊂ R+ be the time domain of the
analysis, the elastic wave propagation problems are modeled by the following equations in
index notation:

ρüi − σij,j = bi in Ω× I (1)

where ui : Ω× I → R and σij : Ω× I → R stand for the displacement and Cauchy stress
tensor components, respectively, and ρ : Ω→ R+ is the mass density while bi : Ω× I → R
is the given body force components. In order to have a well-posed problem, it is necessary
to impose initial and boundary conditions. Thus, considering the partition ∂Ω = Γ =
ΓDi ∪ ΓNi with ΓDi ∩ ΓNi = ∅ the boundary conditions can be written as:

ui = ūi on ΓDi × I, σijnj = t̄i on ΓNi × I (2)

where ūi : ΓDi × I → R are prescribed displacements and t̄i : ΓNi × I → R are prescribed
tractions with nj being the unit outward normal vector components. To complete the
statement of the problem, the prescribed initial conditions are given by:

ui = u0i in Ω for t = 0, u̇i = v0i in Ω for t = 0 (3)

When the classic semi-discrete finite element formulation is applied to above equations
[1], one obtains a system of ordinary differential equations, i.e.:

MÜ + KU̇ = F (4)
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where M ∈ Rnq×nq and K ∈ Rnq×nq are the global mass and stiffness matrices, respectively,
and F : I → Rnq is the external force vector. Vectors U : I → Rnq and Ü : I → Rnq
represent respectively, nodal displacements and accelerations with nq being the number
of equations. In this work the solution of Eqs. (1)-(3) is restricted to linear problems, i.e.,
σij = Cijkluk,l where Cijkl : Ω→ R is the elasticity tensor components.

2.2 Legendre spectral element

In the FEM, the original physical domain Ω is discretized into nel non-overlapping
element domains Ωe, and the unknown fields are approximated in the spatial domain
taking into account basis functions Ni. The SFEM follows a similar approach but it is
characterized by the use of high-order Lagrange polynomials of degree p in each direction
(see Figure 1). In this way, over each 2D element, basis functions Ni are constructed taking
into account the tensor product of Lagrange polynomials that pass through the p+1 Gauss-
Lobatto-Legendre (GLL) points (see Figure 1b). As a result, the 2D quadrilateral spectral
element is formed by a total of (p+ 1)2 nodes as depicted in Figure 2. In Figure 1 one can
also see the difference between the use of classical equidistant points and the GLL points
in which for the former high oscillations near the end points appear, which is known as
Runge phenomenon as previously commented.
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Figure 1: Comparison among the different 1D shape functions considering (a) equidistant
points; and (b) GLL points.

(a) (b) (c)

Figure 2: Different kinds of 2D-SFEs with respect to the polynomial order p: (a)3 × 3;
(b)4× 4; (c)7× 7.

One major advantage of the SFEM in the context of wave problems lies in the fact that
only 4 or 5 points per minimum wavelength are required when working with a polynomial
degree between p = 5 and p = 8, resulting in meshes with a smaller number of elements and
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nodes when compared to the classic 4-noded quadrilateral element wich requires between
15 to 20 points.

2.3 Graded finite elements

There are different ways to deal with the material non-homogeneity, the most common
way consists in the use of homogeneous elements with constant material properties at the
element level. Zhang and Paulino [8] developed the so-called Generalized Isoparametric
Formulation that consists in incorporating the material property variation at the element
by employing the same shape functions adopted to interpolate the unknown displacement
field. In their study, the use of this strategy results in smoother and more accurate solu-
tions when conpared to the homogeneous element strategy. In this way, the interpolation
for the material properties can written as

E =
nne∑
i=1

NiEi, ν =
nne∑
i=1

Niνi, ρ =
nne∑
i=1

Niρi (5)

where Ni are the basis functions, nne is the number of nodes per element, E is the Young’s
Modulus, ν is the Poisson’s ratio and ρ is the mass density. From a practical point of
view the use of such approximations is quite straightforward in the sense that material
properties are generally known from experimental data or standard physical tables.

The use of non-homogeneity at the element level results in slightly different matrices
from those obtained for constant materials, i.e.:

Me =

∫
Ωe

NTρ(x)NdΩe, Ke =

∫
Ωe

BTC(x)BdΩe (6)

where B denotes the matrix of the spatial derivatives of the basis functions containing in
the matrix N and C is the constitutive material matrix; note that both C and ρ depend
on the global coordinates. Likewise, wave velocities inside the element are no longer
constants, e.g. the dilatational wave speed Cd is now expressed as

C2
d(x) =

E(x)(1− ν(x))

(1 + ν(x))(1− 2ν(x))ρ(x)
(7)

It is worth mentioning that the size of the time step can be readily estimated by
invoking the Courant condition [1], which provides an upper limit for the size of the time
step ∆t employed in classical explicit schemes. Thus, considering the highest velocity in
the model defined as Chd = max{Cd(x),x ∈ Ω}, one obtains:

nC =
Chd∆t

h
(8)

where h is the smallest distance between two consecutive nodes and nC is the Courant
number. In practice, for polynomials approximations of order p = 5 or p = 8, the Courant
number must be of the order of 0.60 [5].
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Additionally, to simplify the computer implementation, only a linear variation for the
material properties along either x or y direction is here considered, resulting in the below
expressions (along the y direction which is adopted in the example):

E(y) = E1 + (E2 − E1)y/L, ν(y) = ν1 + (ν2 − ν1)y/L, ρ(y) = ρ1 + (ρ2 − ρ1)y/L (9)

where subscripts 1 and 2 denote the two end points y = 0 and y = L, respectively. For
the equivalent homogeneous material one considers:

Ē =
1

L

∫
E(y)dy, ν̄ =

1

L

∫
ν(y)dy, ρ̄ =

1

L

∫
ρ(y)dy (10)

which are defined as the equivalent material constants.
Finally, it is important to highlight that if the mass matrix is evaluated taking into

account the GLL quadrature a diagonal matrix is obtained.

3 Numerical example and discussion

The numerical example presented here consists of showing the different behaviors of
the wave propagation under the equivalent homogeneous material, bi-material and FGM.
Furthermore, a comparison between the results obtained using the SFEM and the FEM
are presented and discussed. In Figure 3 one can see a sketch of the elastic models used
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Figure 3: Elastic models with different material profiles: (a)Equivalent Homogeneous,
(b)Bi-material, (c) FGM.

here, where in the top left corner a vertical point load is applied and its time variation is
defined as f(t) = 103(1− 2π2f2

c (t− t0)2)e−(πfc(t−t0))2 , where t0 = 0.1s with fc = 12.5Hz
being the central frequency.

A mesh composed of 400 spectral elements of order p = 7 with an element length le = 50
is adopted to the SFEM, whereas 10000 four-noded quadrilateral elements with le = 10
are considered in the FEM. The Newmark scheme with a time-step size ∆t = 5× 10−4s is
used for both methods. The physical properties of the three models are shown in Table 1.

Figure 4 shows the results obtained at point A (see Figure 3); at the left graphic it is
readily seen the difference of the three models; all of them are solved with a very fine FE
mesh (such a result will be used as a reference solution).
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Table 1: Material properties
Material ν ρ(kg/m3) E(N/m2) cd(m/s) cs(m/s) cr(m/s)
Homo. 0.265 4000 3×109 3045 1722 1584
Mat. 1 0.31 5000 2×109 2355 1236 1146
Mat. 2 0.22 3000 4×109 3902 2338 2132

Furthermore, the solution of the FGM model is more similar to that of the equiv.
homogeneous model than the solution of the bi-material model which suffers with the
wave reflection effects on the materials interface. In the next two graphics, it is possible
to see that the solution obtained by the SFEM is more accurate than that obtained by
the FEM which adopts a larger amount of elements.
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Figure 4: Comparison of the numerical results at point A: the horizontal displacement in
different models (left); and the horizontal displacement (middle) and vertical displacement
(right) with the different methods.

Differently from the FGM and equiv. homogeneous models, in the bi-material one
refraction and reflection are clearly observed when the P-wave crosses the interface between
the materials (see Figure 5b). Moreover, unlike the homogeneous model, in the FGM model
(Fig. 5c) it is observed that the wave front (P-wave or S-wave) propagates faster in the
y-direction than in the x-direction caused by the increase of the vertical velocity.
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Figure 5: Snapshot of the ‖u‖ at t=0.4 s for the models: (a)Equivalent homogeneous,
(b)Bi-material, (c)FGM.
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4 Conclusions

In a great deal of cases the reflection and refraction presented in the Bi-material model
are not desired. As presented in this work, functionally graded materials can be efficiently
adopted to avoid this issue since the material properties are continuous throughout the
domain under consideration. The elastodynamic equations with this type of material were
easily implemented numerically and the use of the SFEM seems to be quite appropriated
because models do not present an interface between the materials and therefore distorted
elements are avoided. Furthermore, because of its low dispersion, only 4 or 5 nodes per
minimum wavelength need to be considered in the discretization, as previously commented.
Thus, a smaller system of equations but with a higher sparsity profile is generated when
compared to the FEM. However, one possible solution for this issue is to condense internal
nodes as can be seen in [3].
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