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A Simple Novel Algorithm for a Special Diophantine System

Appeared in the System Reliability Problem
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Abstract. System reliability of a stochastic-flow network (SFN) can be computed in terms
of either upper boundary points for demand level d called d-minimal cuts (d-MCs) or lower
boundary points for demand level d called d-minimal paths (d-MP s). A number of different
algorithms have been proposed in the literature to search for and determine all the d-MCs
or d-MP s in an SFN. Majority of those algorithms need to solve a special Diophantine
system. Here, we consider the Diophantine system appeared in d-MC and d-MP problems
and propose a novel efficient algorithm to solve it. The proposed algorithm finds all the
system solutions in a increasing lexicographic order. We illustrate the algorithm through an
example and show its time complexity to be linear according to the number of its solutions.
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1 Introduction

Network reliability theory has extensively been applied to a variety of real-world sys-
tems such as transportation, power transmission and distribution, computer and commu-
nication, and etc. [3]- [10]. System reliability, the probability that the maximum flow of
the network is more than or equal to a demand level d, can be computed in terms of either
upper boundary points for demand level d, called d -minimal cuts (d-MCs) [6] or lower
boundary points for demand level d, called d-minimal paths (d-MP s) [5, 8, 9]. Once all
the d-MCs or d-MP s are determined, the system reliability can be computed by some
methods such as sum of disjoint product [3]. Jane et al. [7] proposed an algorithm to
first obtain all the d-MC candidates and then specify the d-MCs. Presenting new results
as well as a new data structure, Forghani and Mahdavi-Amiri [6] proposed an efficient
algorithm and showed the algorithm to be more efficient than the one given in [7]. Lin
et al. [8] introduced the notion of d-MP candidate and proposed an algorithm that uses
a comparative method to solve d-MP problem. Evaluating the system reliability is an
NP-hard problem [4] and the problem continues to be interesting to investigate. To our
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knowledge, majority of the proposed algorithms in the literature [5]- [8] need to solve a
special Diophantine system whereas the authors have not payed attention to it. Although
several algorithms are available to solve a Diophantine system [2], the desired system is
a special case and can be efficiently solved via a particular approach. Here, we consider
this special system and present a novel efficient linear time algorithm to solve it. We
also show that the proposed algorithm finds all the system solutions in a increasing lex-
icographic order that can be helpful when it employed in d-MC or d-MP problem. In
the sequence, Section 2 describes the required notations, nomenclature and assumptions,
and states briefly the d-MC and d-MP problems. In Section 3, a simple novel efficient
algorithm is proposed to find all the solutions of a special Diophantine system appeared
in d-MC and d-MP problems. Then, the proposed algorithm is shown to be correct.

2 Model Building

Here, we first state the required definitions and assumptions. Then, we explain briefly
the d-MC and d-MP problems to meet the desired Diophantine system (for more details
on the d-MC and d-MP problems, see [5]- [9]).

Let G = G(N,A,M) be a stochastic-flow network (SFN), where N = {1, 2, . . . , n} is
the set of nodes (so, n is the number of nodes), A = {ai| 1 ≤ i ≤ m} is the set of arcs
(so, m is the number of arcs), and M = (M1,M2, . . . , Mm) is a vector with Mi denoting
the maximum capacity of arc ai, for i = 1, 2, . . . ,m. In network G, node 1 and n are
respectively considered as the source and the sink nodes. Denote the current capacity of
ai by xi, and let X = (x1, x2, . . . , xm) be a system-state vector representing the current
capacity of all the arcs. Let Z(X) = {ai ∈ A|xi > 0}, U(X) = {ai|xi < Mi}, and
V (X) be respectively the set of nonzero-capacity arcs, the set of unsaturated arcs, and the
maximum flow of the network from node 1 to node n, under system vector X. Let also
ν = V (M) be the maximum flow of the network from node 1 to node n, and ei = 0(ai) be
a system-state vector in which the capacity level is 1 for ai and 0 for other arcs. A system
state X = (x1, x2, . . . , xm) is less than or equal to system state Y = (y1, y2, . . . , ym), i.e.,
X ≤ Y , when xi ≤ yi , for i = 1, 2, . . . ,m, and also X < Y , when X ≤ Y and there
exists at least one j, j = 1, 2, . . . ,m, such that xj < yj . A path is a sequence of adjacent
arcs from the source node 1 to the sink node n. A minimal path (MP) is a path with no
cycle. A cut is a subset of A in which there is no path from the source node to the sink
node after the elimination of all its arcs from G. A minimal cut (MC) is a cut so that
none of its proper subsets is a cut. Furthermore, let h and f be respectively the number
of MPs and MCs of a network, P1, P2, . . . , Ph be all the MPs, and K1, K2, . . . , Kf

be all the MCs of the network. Let also CPj = min{Mi|ai ∈ Pj} be the capacity of MP,
Pj , for j = 1, 2, . . . , h, and CKi(X) = Σak∈Ki

xk be the capacity of MC, Ki, under system
state X = (x1, x2, ..., xm), for i = 1, 2, . . . , f . Finally, let Rd be the system reliability of an
SFN for demand level d, the probability of transmitting at least a given demand amount,
d units, of data (flow) from source node 1 to sink node n.

Here, we consider the assumptions given below.

1. The capacity of each arc is stochastic with a given probability distribution.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 2, 2015.

DOI: 10.5540/03.2015.003.02.0043 020043-2 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.02.0043


3

2. Capacity of each arc is statistically independent from the one for any other arc.

3. Flow in G satisfies the flow conservation law [1].

4. Each node is perfectly reliable; i.e., deterministic.

5. d is a non-negative integer-valued flow less than or equal to ν.

2.1 d-MC problem

An upper boundary point, called d-minimal cuts (d-MC), is a system-state vector, say
X, such that V (X) = d, and all its unsaturated arcs are sensitive to increase in capacity,
that is, for every Y > X, we have V (Y ) > d. To find all the d-MCs, Jane et al. [7]
introduced the notion of a d-MC candidate as given below.

Definition 2.1. Assuming that Ki is an MC, every integer vector X = (x1, x2, ..., xm)
satisfying the following system is a d-MC candidate obtained from MC, Ki:

(i) CKi(X) = d,
(ii) 0 ≤ xk ≤Mk, ∀ ak ∈ Ki,
(iii) xl = Ml, ∀ al /∈ Ki.

(1)

Therefore, in order to determine all the d-MCs in an SFN, one can first determine all
the d-MC candidates, and then search for the d-MCs among them.

Assuming X1, X2, ..., Xq as all the d-MCs and X = (x1, x2, ..., xm) as a system-state
vector, the system reliability for level d+ 1 using the sum of disjoint products method [3]
is given by

Rd+1 = pr(A) =

q∑
i=1

pr(Ei), (2)

where, A = ∪qi=1Ai = ∪qi=1Ei, Ai = {X|X > Xi}, E1 = A1, Ei = Ai − ∪i−1j=1Aj , i =
2, 3, ..., q, pr(Ei) =

∑
X∈Ei

pr(X), and pr(X) =
∏m
j=1 pr(xj).

Thus, to compute the system reliability in terms of d-MCs, the first step is finding
all the d-MC candidates. It means, we should solve the given Diophantine system in
Definition 2.1, System (1), according to MC, Ki, for i = 1, 2, . . . , f . This shows the
importance of solving the system.

2.2 d-MP problem

Definition 2.2. A system state vector X = (x1, x2, . . . , xm) is a lower boundary point for
demand level d (or d-MP ) when it satisfies the followings:

(i) V (X) = d,
(ii) V (X − ei) < d, for each i that ai ∈ Z(X).

(3)

Definition 2.3. A vector F = (f1, f2, . . . , fh) is named a feasible flow vector when it
satisfies the followings:

(i) f1 + f2 + · · ·+ fh = d,
(ii) 0 ≤ fj ≤ CPj , j = 1, 2, . . . , h,
(iii)

∑
ai∈Pj

fj ≤Mi, i = 1, 2, . . . ,m,
(4)
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where h is the number of MPs, CPj is the capacity of MP, Pj, for j = 1, 2, . . . , h, and Mi

is the maximal capacity of arc ai, for i = 1, 2, . . . ,m.

Note that in a feasible flow vector (FFV) F = (f1, f2, . . . , fh), each component, say
fj , for j = 1, . . . , h, denotes the amount of flow passing through MP, Pj . Hence, for each
FFV F , we can obtain a system state vector XF = (x1, x2, . . . , xm) using the following
equation:

xi =
∑
ai∈Pj

fj , ∀i = 1, 2, . . . ,m. (5)

Lemma 2.1. [5] Assuming XF = (x1, x2, . . . , xm) as the obtained system state vector
from a feasible solution vector F = (f1, f2, . . . , fh) employing Eq. (5), we have V (XF ) = d.

For each feasible flow vector F = (f1, f2, . . . , fh), the system state vector XF =
(x1, x2, . . . , xm) obtained by Eq. (5) is named a d-MP candidate. Lin et al. [8] showed
that each d-MP is a d-MP candidate. Hence, to find all the d-MP s, one can first de-
termine all the candidates, and then check each candidate to be a d-MP according to
Definition 2.2.

Assuming X1, X2, . . . , Xλ as all the d-MP s, let Er = {X|X ≥ Xr}, for r = 1, 2, . . . , λ,
H1 = E1, Hi = Ei − ∪i−1r=1Er, i = 2, 3, ..., λ. In this case, according to sum of disjoint
product technique [3], we have

Rd =
λ∑
r=1

Pr(Hr), (6)

where Pr(Hr) =
∑

X∈Hr
Pr(X), and Pr(X) =

∏m
j=1 Pr(xj).

As seen, the first step in evaluating the system reliability in terms of d-MP s, is also
determination of all the candidates, and this shows the importance of solving System (4).

3 The proposed algorithm

Here, we propose a new simple efficient algorithm to find all the integer solutions of
the systems (1) and (4). As seen, the last equation in system (1) is to set some variables,
and thus its computing cost can be disregarded. Also, we observe that the first equations
in the systems (1) and (4) state that the sum of some corresponding variables must equal
d. Moreover, one can first find all the solutions of (i) and (ii) in System (4), and then
check them for the third inequality, (iii). Consequently, here, we consider Diophantine
system (7) given below because it is the common part in both desired systems (1) and (4).

(i) x1 + x2 + . . .+ xh = d,
(ii) 0 ≤ xi ≤Mi, i = 1, 2, . . . , h.

(7)

We can now discuss our algorithm for solving (7). Our proposed algorithm finds so-
lutions of the system as h-tuple vectors, (x1, . . . , xh). In the beginning (Step 0), every
component of the vector is set to 0. The algorithm first finds the first solution of the
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system in lexicographical order. Then, in each iteration, it obtains the next solution in
lexicographical order using the previous one. The procedure consists of two general stages
(steps 1 and 2). In the first stage (Step 1), it distributes the given amount d among the
components of solution vector from the right end of the vector to the front. In the sec-
ond stage (Step 2), the algorithm starts from the right end of the current solution vector
searching for the first component whose value can be increased by one unit. This compo-
nent is named the pivot component. The algorithm sets all the components at the right
side of the pivot to zero, increasing d by the sum of the removed values. Then, the pivot
value is increased by one unit, reducing d by one unit. Next, transfer is made to the first
stage to distribute the current value of d to determine the next solution vector. We are
now in a position to state the algorithm.

Algorithm 1. Finding all the integer solutions of system (7).

Step 0 Let Q = φ, r = 1, and xi = 0, for i = 1, 2, . . . , h.
Step 1 Distribute the given amount of d.
1.1. Let i = h.
1.2. Let xi = min{Mi, d}, d = d− xi, and i = i− 1.
1.3. If d > 0 then go to Step 1.2, else let Xr = (x1, x2, . . . , xh), Q = Q∪ {Xr}, r = r+ 1,
and go to Step 2.
Step 2 Find the pivot component of solution Xr to find next solution as follows:
2.1. Let i = h.
2.2. If i = 1 then stop (Q is the set of all integer solutions of system (7) sorted in lexico-
graphical order).
2.3. Let d = d+ xi, xi = 0, and i = i− 1.
2.4. If xi = Mi or d = 0 then go to Step 2.2
else xi is a pivot: let xi = xi + 1, d = d− 1 and go to Step 1.

To expose Algorithm 1, we use an example. Consider x1 + x2 + x3 = 7 with x1 ≤ 2,
x2 ≤ 4, and x3 ≤ 5. Next, we find its all integer solutions using Algorithm 1.

Step 0. Let Q = φ, r = 1, and x1 = x2 = x3 = 0.
Step 1. Distribute the given amount of d = 7.
1.1. i = 3.
1.2. x3 = min{5, 7} = 5, d = 7− 5 = 2, and i = 2.
1.3. Since d = 2 > 0, transfer is made to Step 1.2.
1.2. x2 = min{4, 2} = 2, d = 2− 2 = 0, and i = 1.
1.3. Since d = 0, we let X1 = (0, 2, 5), Q = {X1}, r = 2, and transfer is made to Step 2.
Step 2. Find the pivot component of solution X1 to find the next solution as follows:
2.1. Let i = 3.
2.2. i 6= 1.
2.3. d = 0 + 5 = 5, x3 = 0, and i = 2.
2.4. Since x2 = 2 6= M2, x2 is an pivot component.
2.5. x2 = 3 and d = 5− 1 = 4 and transfer is made to Step 1.
...
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The final set of obtained solutions is: Q = {(0,2,5), (0,3,4), (0,4,3), (1,1,5), (1,2,4),
(1,3,3), (1,4,2), (2,0,5), (2,1,4), (2,2,3), (2,3,2), (2,4,1)}.

According to Algorithm 1, we see that to generate a solution vector, steps 1 and 2 are
iterated once. On the other hand, the time complexity of each iteration of steps 1 and 2
is O(h), where h is the number of the components of the solution vector. Therefore, for
obtaining each solution vector, the time complexity of Algorithm 1 is O(h). Consequently,
the time complexity of the algorithm is O(hγ) where γ is assumed to be the number of
solutions of the system. As a result, we have the following result.

Theorem 3.1. The time complexity of Algorithm 1 is O(hγ).

The following lemma demonstrates the correctness of Algorithm 1.

Lemma 3.1. If we solve system (7) by Algorithm 1, then the followings hold:
(1) The solutions obtained by the algorithm are sorted in lexicographical order.
(2) The algorithm obtains all solutions of the system with no duplicates.

Proof. (1) Since in the beginning, the algorithm sets the maximum possible value to the
components from the right end of the h−tuple vector, it is readily seen that the first
solution obtained by the algorithm is the first one in lexicographical order. Suppose
that Q is the solution set of the system in lexicographical order and X and Y are two
arbitrary successive solutions of the system in set Q with X appearing immediately before
Y . Also, assume that if X is obtained by the algorithm, the next solution obtained by
the algorithm is Z. We show that Z = Y . The way the algorithm operates, Z is clearly
after X in lexicographical order. Hence, since Y is immediately after X, the solution
Z is equal to Y or comes after Y , i.e., Z ≥ Y . Now, assume that the first difference
between X and Z is in the jth component and the first difference between X and Y is in
the rth component. Note that in accordance with the algorithm, it is clear that the first
difference between X and Z appears at the pivot component selected in the second step
of the algorithm, and so zj = xj + 1. Since the vectors Y and Z in Q both appear after
X, their components are greater than the corresponding components of X in their first
occurrence of a difference. Moreover, since Z is equal to or greater than Y , we have r ≥ j.
On the other hand, according to the way algorithm selects the pivot component, we know
that r ≤ j. Therefore, we have r = j. Now, since zj = xj + 1 and Z cannot be before
Y , it is deduced that zj = yj . So, the first j components of both Y and Z are the same.
Thus, the sum of their last h − j components are the same as well. Since the algorithm
constructs Z by filling in from the right end component with a maximum possible value,
it is concluded that Z cannot be after Y , and consequently Z = Y .

(2) According to (1), we see that if Q is the solutions set of the system in lexicographical
order, the algorithm find all the solutions of the system one by one exactly in the order
they are set in Q. Hence, the proof is complete.

For Diophantine system (7), the existing algorithms in the literature usually give the
solutions by a specific solution, X0, and a set of linearly independent spanning vectors,
X1, X2, . . . , and Xα [2]. Hence, even with having this kind of solutions, to obtain each
solution exception of X0, we need at least O(h) time to construct the solution according to
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X1, X2, . . . , and Xα (remind each solution is h-tuple). Therefor, since γ is assumed to be
exactly the number of system solutions, not an upper bound for it, the best possible time
complexity to have all the system solutions at hand is O(hγ) where is the time complexity
of Algorithm 1. Moreover, another remarkable point is that the algorithm finds all the
solutions in a increasing lexicographic order that can be very useful in the d-MC and
d-MP problems with budget or time constraints [9].
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