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Abstract. The hidden subgroup problem (HSP) plays an important role in quantum com-
putation, because many quantum algorithms that are exponentially faster than classical
algorithms are special cases of the HSP. In this paper we show that there exist a new ef-
ficient quantum algorithm for the HSP on groups ZN o Zqs where N is an integer with a
special prime factorization.
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1 Introduction

The most important problem in group theory in terms of quantum algorithms is called
hidden subgroup problem (HSP) [7]. The HSP can be described as follows: given a group
G and a function f : G→ X on some set X such that f(x) = f(y) iff x ·H = y ·H for some
subgroup H, the problem consists in determining a generating set for H by querying the
function f . We say that the function f hides the subgroup H in G or that f separates the
cosets of H in G. A quantum algorithm for the HSP is said to be efficient when the running
time is O(poly(log |G|)). There are many examples of efficient quantum algorithms for the
HSP in particular groups [10,11]. It is known that for finite abelian groups, the HSP can
be solved efficiently on a quantum computer [7]. On the other hand, an efficient solution
for a generic non-abelian group is not known. Two important groups in this context are
the symmetric and the dihedral groups. An efficient algorithm for solving the HSP for the
former would imply in an efficient solution for the graph isomorphism problem [1] and for
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the latter would solve instances of the problem of finding the shortest vector in a lattice,
which has applications in cryptography [9].

In this article, we describe a new efficient quantum algorithm to solve the HSP in
the specific class of non-abelian groups, i.e., the semi-direct product groups of the form
G = ZN o Zqs , where, N is factorized as pr11 . . . prnn and there exists a 1 ≤ k ≤ n such that
qt (q odd prime) divides pk − 1 and q does not divide pi − 1 for all i 6= k. Te parameter
t ∈ {0, 1, . . . , s} characterizes the group as can be checked in Sec. 2. Our algorithm was
inspired by the work of Chi et. al. [2] that solved the HSP in ZN o Zp, where p is a
prime that does not divide pi − 1 for any of the prime factors pi of N . As in [2], we use
the homomorphic properties of G = ZN o Zqs to reduce the problem to similar ones with
known efficient solutions. As far as we know this is the first efficient quantum algorithm
to solve the HSP in this class of groups.

This work is organized as follows. In Section 2, we give the relevant definitions and
results concerning the semi-direct product groups and explain its homomorphisms and
their properties. In Section 3, we present our main result and we show that there exist
an efficient quantum algorithm for the HSP on the groups. In Section 4, we draw our
conclusions.

2 Semi-direct Product Groups

The semi-direct product of two groups A and B is defined by a homomorphism φ :
B → Aut(A), where Aut(A) denotes the automorphism group of A. The semi-direct
product A oφ B is the set {(a, b) : a ∈ A, b ∈ B} with the group operation defined as
(a, b)(a′, b′) = (a + φ(b)(a′), b + b′). One easily checks that the group inversion operation
satisfies (a, b)−1 = (φ(−b)(−a),−b).

In this paper we consider the HSP on the semi-direct product groups G = ZNoφ Zqs for
positive integers N and s and odd prime number q. We assume that the prime factorization
of N is pr11 . . . prnn and there exist a 1 ≤ k ≤ n such that qt divides pk − 1 and q does not
divide pi − 1 for all i 6= k. The parameter t ∈ {0, 1, . . . , s} characterizes the group as
shown in the following.

The elements x = (1, 0) and y = (0, 1) generate the groups ZN oφ Zqs . Since Aut(ZN )
is isomorphic to Z∗N , the homomorphism φ is completely determined by α := φ(1)(1) ∈ Z∗N
and φ(b)(a) = aαb for all a ∈ ZN and b ∈ Zqs . Now, note that φ(0) = φ(qs) : ZN → ZN
is the identity element of the group Aut(ZN ). Then αq

s
= φ(qs)(1) = 1. If the element

α ∈ Z∗N satisfies the congruence relation Xqs
= 1 mod N , then it defines the semi-direct

product ZN oα Zqs . In this case, we must have ord(α) = qt for some integer 0 ≤ t ≤ s.
The case t = 0 reduces to the direct product ZN × Zqs , which is an abelian group.
An efficient solution for the HSP is known for this case [7]. Since α ∈ Z∗N , qt divides
ϕ(N) = pr1−1

1 . . . prn−1
n (p1 − 1) . . . (pn − 1), where ϕ is the Euler phi-function. Then, we

can choose the option qt | pn − 1 with no loss of generality.
Now note that due to factorization of N , the group ZN is isomorphic to product of

cyclic groups Zpr1
1
× . . .× Zprn

n
, which implies

ZN oφ Zqs ∼= (Zpr1
1
× . . .× Zprn

n
) oφ Zqs . (1)
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The elements of (Zpr1
1
×. . .×Zprn

n
)oφ Zqs have the form ((a1, . . . , an), b), where (a1, . . . , an) ∈

Zpr1
1
× . . . × Zprn

n
and b ∈ Zqs . For each b in Zqs the element φ(b) is an automorphism

on Zpr1
1
× . . .× Zprn

n
such that α = φ(1)(1) is an element in Z∗

p
r1
1
× . . .× Z∗

prn
n

of order qt.
Note that Zpri

i
is isomorphic to the subgroup I1×Zpri

i
×I2 of Zpr1

1
× . . .×Zprn

n
, where I1

is the identity on Zpr1
1
× . . . × Z

p
ri−1
i−1

and I2 is the identity on Z
p

ri+1
i+1
× . . . × Zprn

n
, for all

i = 1, . . . , n. Thus, we can identify an element ai in Zpri
i

with the point ai in I1×Zpri
i
×I2

such that it has an integer value ai in the i-th coordinate and 0′s elsewhere.
Now we are ready to state the following two results. The proofs follow similar strategies

as proving Lemmas 1 and 2 in Ref. [2].

Lemma 2.1. Let Zpr1
1
× . . .×Zprn

n
and Zqs be finite abelian groups with distinct odd prime

numbers p1, . . . , pn and q and positive integers r1, . . . , rn and s. Define the semi-direct
product group (Zpr1

1
× . . .× Zprn

n
) oφ Zqs. Then for each b ∈ Zqs and ai ∈ Zpri

i
there exist

a ci ∈ Zpri
i

such that φ(b)(ai) = ci.

Proof. Let ei be elements in Zpr1
1
× . . .× Zprn

n
with all components equal zero except the

i-th one which is 1. It is enough to show that φ(b)(ei) = di, for some di ∈ Zpri
i

. In fact,
let us suppose that φ(b)(ei) = (d1, . . . , dn). Note that

(0, . . . , 0) = φ(b)(0, . . . , 0) = φ(b)(0, . . . , 0, prii , 0, . . . , 0) = prii φ(b)ei
= (prii d1, . . . , p

ri
i dn).

Then, for all j = 1, . . . , n we have prii aj ≡ 0 mod p
rj
j and this implies that aj ≡ 0 mod p

rj
j

for all j 6= i. Hence, φ(b)(ei) = (0 . . . , di, 0, . . . , 0) = di as was to be shown.

Theorem 2.1. Let N be a positive integer with prime factorization pr11 . . . prnn and q an
odd prime such that q 6= pi and s a positive integer. Define the semi-direct product group
G = ZN oαZqs for an α ∈ Z∗N . Let t ∈ {1, . . . , s} be the smallest positive integer such that
αq

t
= 1. Let us assume that there exist a 1 ≤ k ≤ n such that qt | pk − 1 and q - pi − 1 for

all i 6= k. By choosing k = n (WLOG) we have

ZN oφ Zqs ∼= (Zpr1
1
× . . .× Z

p
rn−1
n−1

)× (Zpr oψ Zqs), (2)

for some homomorphism ψ from Zqs into the group of automorphisms of Zpr and p = pn
and r = rn.

Proof. Note that φ(qs) is the identity map I on Zpr1
1
× . . .×Zprn

n
. For all i = 1, . . . , n− 1,

follows from Lemma 2.1 that ei = φ(qs)ei = (0 . . . , diq
s
, . . . , 0). Then di

qs
= 1 mod prii

and di ∈ Z∗
p

ri
i

has order qt
′
, for some t′ ∈ {1, . . . , s}. Suppose di 6= 1. Since qt

′
divides

the order of Z∗
p

ri
i

and gcd(pi, q) = 1, we have that qt
′

divides pi − 1. But that leads to an
absurd, hence di must be 1 and φ acts trivially on Zpr1

1
× . . .×Z

p
rn−1
n−1

. Thus, there exists a

homomorphism ψ from Zqs into the group of automorphisms of Zpr (p = pn and r = rn),
such that for all b ∈ Zqs and all (a1, . . . , an) ∈ Zpr1

1
× . . .× Zprn

n
we have

φ(b)(a1, . . . , an) = (a1, . . . , an−1, ψ(b)(an)). (3)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 2, 2015.

DOI: 10.5540/03.2015.003.02.0045 020045-3 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.02.0045


4

Now for two elements g = ((a1 . . . , an), b) and g′ = ((a′1 . . . , a
′
n), b′) in (Zpr1

1
× . . .×Zprn

n
)oφ

Zqs , the group operation is defined by

gg′ = ((a1, . . . , an) + φ(b)(a′1, . . . , a
′
n), b+ b′)

= ((a1 + a′1, . . . , an−1 + a′n−1, an + ψ(b)(a′n), b+ b′). (4)

Define the map

Γ : ZN oφ Zqs → (Zpr1
1
× . . .× Z

p
rn−1
n−1

)× (Zpr oψ Zqs), (5)

such that Γ(a1, . . . , an, b)) = ((a1, . . . , an−1), (an, b)). It is easy to show that this map is
indeed an isomorphism.

3 Quantum Algorithm for HSP in ZN oφ Zqs

In this section we present an efficient quantum algorithm that can solve the HSP in
ZN oφ Zqs , where N is factorized as N = pr11 . . . prnn and given a 1 ≤ t ≤ s, there exists a
1 ≤ k ≤ n such that qt divides pk − 1 and q - pi − 1 for all i 6= k.

By defining N ′ = N/prnn we obtain Zpr1
1
× . . . × Z

p
rn−1
n−1

∼= ZN ′ . From Theorem 2.1,

it follows that ZN oφ Zqs ∼= ZN ′ × (Zpr oψ Zqs). The orders of the groups in this direct
product are relatively prime. Hence, from Lemma 3 (Ref. [2]), if H is a subgroup of
ZN ′ × (Zpr oψ Zqs) then H = H1 × H2, where H1 is a subgroup of ZN ′ and H2 is a
subgroup of Zpr oψ Zqs . The HSP on ZN o Zqs reduces to the HSP on each factor by the
following.

Let f be the oracle function that hides the subgroup H in ZN ′ × (Zpr oψ Zqs). For
simplicity of notation, let us call A = ZN ′ and B = Zpr oψ Zqs . Define oracle function
f1 by the restriction of f to A, which hides H1 in A. Analogously, define oracle function
f2 by the the restriction of f to B, which hides H2 in B. The solution of the HSP in
the groups A and B with functions f1 and f2 determines generators for the subgroups H1

and H2, respectively. The group A is abelian and the group B was addressed in [5,6] and
recently generalized by [4]. Therefore, we obtain the following result:

Theorem 3.1. Let N be a positive integer with prime factorization pr11 . . . prnn , q an odd
prime such that q 6= pi and s a positive integer. Define the semi-direct product group
G = ZN oα Zqs for an α ∈ Z∗N . Let t ∈ {1, . . . , s} be the smallest positive integer such
that αq

t
= 1. Let us assume that there exist a 1 ≤ k ≤ n such that qt | pk−1 and q - pi−1

for all i 6= k. Then there exists an efficient quantum algorithm that solves the HSP in the
semi-direct product groups ZN oα Zqs.

4 Conclusion

We have addressed the HSP on the semi-direct product groups G = ZN oZqs where N
is factorized as N = pr11 . . . prnn and given a 1 ≤ t ≤ s, there exists a 1 ≤ k ≤ n such that qt

divides pk−1 q - pi−1 for all i 6= k. By employing an isomorphism between ZN oZqs and
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the direct product of Zpr oψ Zqs with cyclic groups we have shown that the HSP can be
reduced to similar HSPs the solutions of which are already known. This provides a new
efficient solution for the HSP on G.
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[5] D. N. Gonçalves, R. Portugal, and C. M. M. Cosme, Solutions to the hidden sub-
group problem on some metacylic groups, Proc. 4th Worshop on Theory of Quantum
Computation, Communication and Cryptography, LNCS, Springer-Verlag, (2009).

[6] D. N. Goncalves and R. Portugal, Solution to the Hidden Subgroup Problem for a
Class of Noncommutative Groups, Quantum Physics, Abstract quant-ph/1104.1361,
(2011).

[7] C. Lomont, The Hidden Subgroup Problem - Review and Open Problems, Quantum
Physics, Abstract quant-ph/0411037, (2004).

[8] M. Mosca, Quantum algorithms, Encyclopedia of Complexity and Systems Science,
pages 7088–7118, (2009).

[9] O. Regev, Quantum Computation and Lattice Problems, SIAM Journal on Comput-
ing, 33(3):738–760, (2004).

[10] D. R. Simon, On the Power of Quantum Computation, Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pages 116–123, (1994).

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 2, 2015.

DOI: 10.5540/03.2015.003.02.0045 020045-5 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.02.0045


6

[11] P. W. Shor, Algorithms for quantum computation: discrete logs and factoring, Proc.
of the 35th Ann. IEEE Symp. on the Foundation of Computer Science, pages 124–134,
(1994).

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 3, N. 2, 2015.

DOI: 10.5540/03.2015.003.02.0045 020045-6 © 2015 SBMAC

http://dx.doi.org/10.5540/03.2015.003.02.0045

