Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Uma Família de Grafos Q-Coespectrais

Bruna Santos de Souza¹

Departamento de Matemática Pura e Aplicada, UFRGS, Porto Alegre, RS $Vilmar\ Trevisan^2$

Departamento de Matemática Pura e Aplicada, UFRGS, Porto Alegre, RS

Resumo. Este trabalho apresenta uma família infinita de pares de grafos coespectrais em relação à matriz Laplaciana sem sinal, partindo de um par de grafos coespectrais em relação à mesma matriz já conhecido.

Palavras-chave. Coespectralidade, Teoria Espectral de Grafos, Laplaciana sem sinal

1 Introdução

Dado um grafo G = (V, E), onde V é o conjunto dos vértices e E é o conjunto das arestas, associa-se à ele diferentes matrizes. O espectro de um grafo G em relação à matriz simétrica M, denotado por M - spect(G) é o multiconjunto composto pelos autovalores $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ associados à matriz M. O objetivo principal da Teoria Espectral de Grafos é determinar propriedades estruturais de grafos a partir de seu espectro. Uma dificuldade que se tem é o fato de que existem grafos diferentes (não isomorfos) com o mesmo espectro, são os chamados grafos coespectrais. Como temos diferentes matrizes associadas ao grafo, pode-se determinar que matriz apresenta menos pares de grafos coespectrais.

A matriz Laplaciana sem sinal Q de um grafo G com n vértices é uma matriz simétrica de ordem $n \times n$ da forma $q_{ij} = 1$ se i,j forem adjacentes e 0 caso contrário para $i \neq j$, e $q_{ii} = d_i$, onde d_i é o grau do vértice i. O trabalho de Cvetković [1] apresenta uma amostra feita com grafos de até 11 vértices evidenciando que a matriz Laplaciana sem sinal é a matriz que apresenta menos pares coespectrais sugerindo que grafos Q-coespectrais são raros. Contudo, neste trabalho, construímos uma família infinita de pares de grafos Q-coespectrais. Mais especificamente, ao final deste trabalho, demonstramos o seguinte resultado.

Teorema 1.1: Se G_1 e G_2 são grafos com n vértices Q-coespectrais então existe uma família de grafos $G_1^{(k)}$ e $G_2^{(k)}$ de grafos Q-coespectrais, para k=1,..., com $n2^k$ vértices.

Além disso, apresentamos um exemplo dessa construção com grafos G_1 e G_2 já conhecidos na literatura [2].

 $^{^{1}} brunasouza@ufrgs.br\\$

²trevisan@mat.ufrgs.br

2 A Construção

A operação produto cartesiano de dois grafos $G=(V_1,E_1)$ e $H=(V_2,E_2)$, denotado por $G\times H$ é um grafo com conjunto de vértices $V=(V_1\times V_2)$, sendo dois vértices $(v_1,v_2)\in V$ e $(u_1,u_2)\in V$ adjacentes se, e somente se, u_1 é adjacente a v_1 em G e $u_2=v_2$ em H ou $u_1=v_1$ em G e u_2 é adjacente a v_2 em H. Um exemplo de produto cartesiano pode ser visto à direita da Figura 1.

Para suporte matemático da construção utilizaremos o seguinte Teorema [3].

Teorema 2.1: Sejam G_1 e G_2 grafos com Q-autovalores $q_{1,1},...,q_{1,n}$ e $q_{2,1},...,q_{2,k}$, respectivamente. Os Q-autovalores de $G_1 \times G_2$ são $q_{1,i} + q_{2,j}$, i = 1,...n, j = 1,...k.

Como os Q-autovalores do caminho P_2 são 0 e 2, substituindo G_2 por P_2 , temos:

Corolário 2.1: O conjunto dos autovalores de $G_1 \times P_2$ é $\lambda_1, ..., \lambda_n, \lambda_1 + 2, ..., \lambda_n + 2$, onde λ_i é autovalor de G_1 .

Demonstração do Teorema 1.1: Para i=1,2 considere $G_i^{(0)}=G_i$ e $G_i^{(k)}=G_i^{(k-1)}\times P_2$ para $k=1,2,\ldots$ Pelo Corolário 2.1, $G_1^{(k)}$ e $G_2^{(k)}$ são Q-coespectrais para $k=0,1,2,\ldots$ Além disso, note que a cada recursão o número de vértices dobra obtendo um total de $n2^k$ vértices.

Na Figura 1 temos, P_2 , $G_1^{(0)}$, $G_2^{(0)}$ à esquerda e à direita temos o produto cartesiano $G_1^{(0)} \times P_2 = G_1^{(1)}$ e $G_2^{(0)} \times P_2 = G_2^{(1)}$.

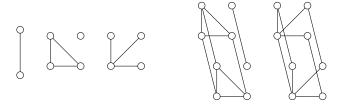


Figura 1: P_2 , $G_1^{(0)}$, $G_2^{(0)}$, $G_1^{(1)}$ e $G_2^{(1)}$

Os grafos $G_1^{(0)}$ e $G_2^{(0)}$ já são conhecidos na literatura [2] e tem Q-autovalores $\{0,1,1,4\}$. O Corolário 2.1 nos garante que os Q-autovalores de $G_1^{(1)}$ e de G_2^1 são $\{0,1,1,2,3,3,4,6\}$. O próximo passo levaria ao $G_1^{(2)}$ e ao $G_2^{(2)}$, e assim por diante formando uma nova família de grafos Q-coespectrais.

Referências

- [1] D. Cvetković and S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian I, Institut Mathématique, vol. 85(99), 19-23, (2009).
- [2] E. R. van Dam and W. H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra and its Applications, vol. 373, 241-272, (2003).
- [3] N. Abreu, R. Del-Vecchio, V. Trevisan e C. Vinagre, Teoria Espectral de Grafos Uma Intridução, Notas do III° Colóquio de Matemática da Região Sul, SBM, (2014).