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Abstract. In this paper we study a linearized Crank-Nicolson in time and Finite Ele-
ment in space algorithm for the BV-Voigt regularization model of geophysical flows, which
presents interesting advantages from the computational point of view. We prove the al-
gorithm conserves energy and is unconditionally stable and optimally convergent. Lastly,
we show that the BV-Voigt model provides accurate solutions and compares favorably with
a related regularization model in a coarse mesh, a case in which the BV model solution
degenerates.
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1 Introduction

Geophysical fluid dynamics studies flows influenced by Earth’s rotation such as atmo-
spheric and oceanic flows. The Barotropic Vorticity (BV) model is one of the simplest
models used to simulate geophysical flows. In dimensionless form [2,8], it is defined as

Ro∂ω∂t +RoJ(ψ, ω)− ∂ψ
∂x −

(
δM
L

)3
∆ω = F in Ω× (0, T )

∆ψ = −ω in Ω× (0, T )

ω(x, 0) = ω0(x) in Ω

with ω representing vorticity, ψ stream function, Jacobian J(·, ·), Munk scale δM , length
scale L, Rossby number Ro and forcing term F .

Despite of being one of the simplest model for geophysical flows, its numerical sim-
ulation is still computationally challenging when long-time integration is required, as in
the climate modeling case [8], for instance. Traditionally, essentially dissipative techniques
such as eddy viscosity parametrization have been used to model the under-resolved part of
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the flow. However, increasing artificial viscosity tends to reduce variability and nonlinear
structures can be destroyed by excessive dissipation [1, 2].

Our goal in this paper is to study a Voigt regularization of the BV model, which has
significant computational advantages compared to other regularizations such as BV-α [6]
and BV-Bardina models [7]. BV-Voigt is a regularization of the BV model based on
the Navier-Stokes-Voigt (NSV) equations [5], an incompressible viscoelastic model which
is a smooth regularization of Navier-Stokes equations [4]. In [5] it is showed that NSV
reduces the stiffness of direct numerical simulations of turbulent flows, with small impact
in the energy containing scales. Unlike the BV-α and BV-Bardina models, in the BV-
Voigt there is no need to solve a filter equation, reducing by one the number of equations
in the model. Moreover, we considered a linearized Crank-Nicolson in time and Finite
Element (FE) in space algorithm for BV-Voigt based on an adaptation of the Baker’s
method presented in [3] which avoids the point fixed iteration that would be necessary to
solve the resulting nonlinear system from the original Crank-Nicolson method. With these
two techniques we obtained a computational efficient, energy conserving, unconditionally
stable and optimally convergent algorithm in order to apply the BV model in geophysical
simulations.

The paper is organized as follows: Section 2 presents the FE scheme and in Section
3 the algorithm is analysed with respect to stability and convergence. In Section 4, we
present simulations in which we estimate convergence rates and evaluate the BV-Voigt
solutions in coarse meshes. Finally, concluding remarks are summarized in Section 5.

2 The finite element scheme and preliminaries

Let Ω ⊂ R2 be a polygonal domain and τh be a regular discretization of Ω. Let H1

be the Sobolev space W 1
2 (Ω) and H1

0 its subspace with zero boundary condition. Let Yh
be the continuous finite element (FE) with kth degree polynomial on each element of the
triangulation τh and Xh be the subspace of Yh with zero boundary values. Denote by 〈·, ·〉
and ‖ · ‖ the inner product and norm in L2(Ω) and ‖ · ‖k for the norm in the space Hk.

The following lemma is helpful in the subsequent analysis (see [6]).

Lemma 2.1 (Skew-symmetry of the trilinear form). Given ψ, ξ, χ ∈ Xh,

〈J(ψ, χ), ξ〉 = −〈J(ψ, ξ), χ〉 .

Our motivation for studying the BV-Voigt model is the search for efficient, uncondi-
tionally stable and accurate methods in order to simulate geophysical flows. Below we
propose a FE in space and Crank-Nicolson in time discretization. As in [8] we consid-
ered slip boundary conditions for the velocity which translate into homogeneous Dirichlet
condition ω|∂Ω = 0 and the impermeability condition ψ|∂Ω = 0.

Algorithm 2.1 (Crank-Nicolson - BV-Voigt model). Let ω0
h and ψ0

h be L2(Ω) projections
into Xh of ω0 ∈ H1

0 and ψ0 ∈ H1
0 , endtime T , F ∈ L∞(0, T ;L2(Ω)), and timestep ∆t > 0.
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Set M = T
∆t and for n=0,...,M-1, find (ωn, ψn) ∈ Xh ×Xh satisfying:

α2Ro
〈
∇ (ωn+1

h −ωn
h )

∆t ,∇λ
〉

+Ro
〈
ωn+1
h −ωn

h
∆t , λ

〉
+Ro

〈
J(ψ

n+ 1
2

h , ξ(ω
n+ 1

2
h )), λ

〉
(1a)

−
〈
∂ψ

n+ 1
2

h
∂x , λ

〉
+
(
δM
L

)3 〈
∇ωn+ 1

2
h ,∇λ

〉
=
〈
Fn+ 1

2 , λ
〉
∀λ ∈ Xh,〈

∇ψn+1
h ,∇χ

〉
=
〈
ωn+1
h , χ

〉
∀χ ∈ Xh. (1b)

where α ≥ 0 is a given length scale, ξ(ω
n+ 1

2
h ) = 2ω

n− 1
2

h − ωn−
3
2

h and vn+ 1
2 := vn+vn+1

2 .

3 Analysis of the scheme

The first step in the analysis of Algorithm 2.1 is to demonstrate that it conserves a
modified form of kinetic energy. We start by defining a Modified Kinetic Energy and a
Energy Dissipation in the BV-Voigt model respectively by

Eα(ψ, ω) := 1
2‖∇ψ‖

2 + 1
2α

2‖ω‖2,
ε(ω) := (δM/L)3 ‖ω‖2.

Then, we obtain the following lemma:

Lemma 3.1 (Conservation of kinetic energy). The solution of (1a) satisfies

Eα(ψMh , ω
M
h ) + ∆t

Ro

M−1∑
n=0

ε
(
ω
n+ 1

2
h

)
= Eα(ψ0

h, ω
0
h) + ∆t

Ro

M−1∑
n=0

〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
.

In particular, if δM = 0 and F = 0 we have Eα(ψMh , ω
M
h ) = Eα(ψ0

h, ω
0
h).

Proof. Choosing λ = ψ
n+ 1

2
h in (1a), using lemma 2.1, using 〈∂ψ

n+ 1
2

h
∂x , ψ

n+ 1
2

h 〉 = 0 because

ψ
n+ 1

2
h ∈ Xh and multiplying by ∆t

Ro

α2
〈
∇
(
ωn+1
h − ωnh

)
,∇ψn+ 1

2
h

〉
+
〈
ωn+1
h − ωnh , ψ

n+ 1
2

h

〉
+ ∆t

Ro

(
δM
L

)3 〈
∇ωn+ 1

2
h ,∇ψn+ 1

2
h

〉
= ∆t

Ro

〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
. (2)

Now, we have to rewrite the three terms on the LHS. For the first, subtracting (1b) in

time step n from (1b) in time step n+ 1 and choosing χ = ψ
n+ 1

2
h we obtain

〈
ωn+1
h − ωnh , ψ

n+ 1
2

h

〉
=
〈
∇ψn+1

h −∇ψnh ,∇ψ
n+ 1

2
h

〉
=
‖∇ψn+1

h ‖2−‖∇ψn
h‖

2

2 . (3)

For the second term in (2), averaging in (1b) and choosing χ = ωn+1
h − ωnh ,

〈
∇ψn+ 1

2
h ,∇ωn+1

h −∇ωnh
〉

=
〈
ω
n+ 1

2
h , ωn+1

h − ωnh
〉

=
‖ωn+1

h ‖2−‖ωn
h‖

2

2 . (4)
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Using (3), (4) and the definition of Eα(ψ, ω), we have

Eα(ψn+1
h , ωn+1)− Eα(ψnh , ω

n) = α2
〈
∇(ωn+1

h − ωnh),∇ψn+ 1
2

h

〉
+
〈
ωn+1
h − ωnh , ψ

n+ 1
2

h

〉
. (5)

For the third term in (2), averaging in (1b) and choosing χ = ω
n+ 1

2
h〈

∇ψn+ 1
2

h ,∇ωn+ 1
2

h

〉
= ‖ωn+ 1

2
h ‖2. (6)

Using (5) and (6) in (2)

Eα(ψn+1
h , ωn+1)− Eα(ψnh , ω

n) + ∆t
Ro

(
δM
L

)3
‖ωn+ 1

2
h ‖2 = ∆t

Ro

〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
, (7)

from which the result follows by summing from n = 0, 1, ...,M − 1.

Lemma 3.2 (Stability). Algorithm 2.1 is unconditionally stable. Its solutions satisfy

α2‖ωMh ‖2 + ‖∇ψMh ‖2 + ∆t
Ro

(
δM
L

)3
M∑
n=0

‖ωn+ 1
2

h ‖2 ≤
(
L
δM

)3
C4

Ro∆t
M∑
n=0

‖Fn+ 1
2 ‖2.

Proof. Now, using Cauchy-Schwarz and Young’s inequalities with ε = (δM/L)3 in (7)

α2 ‖ωn+1
h ‖2−‖ωn

h‖
2

2 +
‖∇ψn+1

h ‖2−‖∇ψn
h‖

2

2 +1
2

∆t
Ro

(
δM
L

)3
‖ωn+ 1

2
h ‖2 ≤ 1

2

(
L
δM

)3
C4

Ro∆t‖Fn+ 1
2 ‖2,

where we used ‖∇ψn+ 1
2

h ‖ ≤ C‖ωn+ 1
2

h ‖ which results averaging (1b), choosing χ = ψ
n+ 1

2
h

and using the Poincaré inequality. Result follows summing from n = 0, 1, ...,M − 1.

Remark 3.1. We remark that Algorithm 2.1 is linear and Xh is finite dimensional. Thus,
for a given time tn (tn := n∆t) and following the proof of lemma 3.2, we can prove
uniqueness of solutions from which existence follows as well for the entire scheme.

Theorem 3.1. Let (ω(t), ψ(t)) be a smooth strong solution of the BV model and ‖f‖∞,k :=
ess sup0≤n≤M ‖fn‖k. Suppose (ωh, ψh) ∈ Xh × Xh solves the approximation (1a)-(1b).
Then, for ∆t small enough (in order to apply the discrete Gronwall inequality), we have

Ro ‖ω − ωh‖∞,0 +
((

δM
L

)3
M−1∑
n=0

∆t‖∇
(
ω(tn+ 1

2 ) − ωn+ 1
2

h

)
‖2
)1/2
≤ O

(
hk + ∆t2 + α2

)
.

Moreover, using the result above, we have

‖ψ − ψh‖∞,1 ≤ O
(
hk + ∆t2 + α2

)
.

Proof. Using the proof of Theorem 1 presented in [7] with α = 0, it remains only to bound
the extrapolation error caused by the linearization of the nonlinear term, which can be
easily bound using Taylor series and the following terms

α2
〈
∇(ωn+1 − ωn),∇en+ 1

2
h

〉
≤ ε

2α
4‖∇(ωn+1 − ωn)‖2 + 1

2ε‖∇e
n+ 1

2
h ‖2,

α2
〈
∇(en+1

⊥ − en⊥),∇en+ 1
2

h

〉
≤ ε

2α
4‖∇(en+1

⊥ − en⊥)‖2 + 1
2ε‖∇e

n+ 1
2

h ‖2,

which we have used the Cauchy-Schwarz and Young’s inequalities. Moreover, eh := ωh −
Pω and e⊥ := ω − Pω, where P is the L2 projection in Xh (see [7]).
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4 Numerical experiments

Now, we present two numerical tests in order to evaluate our BV-Voigt scheme. The
proposed algorithm was implemented in the software FreeFem++3 (see [7] for details on the
implementation). Table 1 presents the convergence rates estimated using the analytical

solution ψ = exp
[
− 2π2

Ro

(
δM
L

)3]
sin(πx) sin(πy) (see [7]). In this table, the estimated

convergence rates corroborate the theoretical convergence rates described in Theorem 3.1.

Table 1: Convergence rates for BV model with δM
L = 0.02 and Ro = 1.0.

Element h−1 ‖w − wh‖2,1 Rate ‖w − wh‖∞,0 Rate ‖ψ − ψh‖∞,1 Rate

P1 4 5.7650E+1 1.4446E+1 3.2264E+0

(∆t =
√
h) 8 1.6554E+1 1.80 3.8776E+0 1.90 1.0477E+0 1.62

16 5.5979E+0 1.56 9.8756E-1 1.97 3.7818E-1 1.47
32 2.3353E+0 1.26 2.4806E-1 1.99 1.6378E-1 1.21
64 1.1005E+0 1.09 6.2089E-2 2.00 7.8322E-2 1.06

P2 4 5.4320E+1 1.7167E+1 3.8608E+0
(∆t = h) 8 1.3669E+1 1.99 4.3071E+0 1.99 9.6949E-1 1.99

16 3.4491E+0 1.99 1.0779E+0 2.00 2.4250E-1 2.00
32 8.7346E-1 1.98 2.6957E-1 2.00 6.0631E-2 2.00
64 2.2214E-1 1.98 6.7339E-2 2.00 1.5158E-2 2.00

In the second test we evaluate the BV-Voigt model in the traditional Double Gyre
Wind Forcing benchmark for Ro = 0.0016 and (δM/L)3 = 0.02 (for more details, see [7]).
In this experiment, the solution of BV model is very sensitive to the mesh resolution.
In Figures 1(a) and 2(a) we present, respectively, the stream function and vorticity high
resolution solution obtained in a uniform triangular mesh with 16,384 triangles (33,153
degrees of freedom, corresponding to a grid with 64× 128 squares).

Finally, we evaluate the solutions obtained in a coarse uniform triangular mesh with
1,024 triangles (2,145 degrees of freedom, corresponding to a grid with 16 × 32 squares).
Figures 1(b) and 2(b) present, respectively, the stream function and vorticity solutions
obtained with the BV model. In this case, the stream function solution intensifies when
compared to the high resolution solution, causing significant discrepancy also in the vortic-
ity field. After that, we test three techniques to fix the mesh resolution problem: increasing
δM/L in the BV model (artificial viscosity technique), the BV-α model and the BV-Voigt
model. Figures 1(c) and 2(c)) show that solution degenerates using the artificial viscos-
ity technique (δM/L = 0.04). On the other hand, the BV-Voigt (Figures 1(d) and 2(d))
and the BV-α (Figures 1(e) and 2(e)) are able to reproduce the high resolution solution.
Moreover, we observe that the BV-Voigt model compares favorably with the BV-α model
(see the min and max stream function values presented in Figure 1).

3www.freefem.org
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(e) BV-α (Coarse),
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Figure 1: Mean fields of stream function for the high resolution BV model (a) and for the
coarse BV (b), BV + artificial viscosity (c), BV-Voigt (d) and BV-α (e) models.
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Figure 2: Mean vorticity fields for various models.

5 Concluding remarks

In this paper we proposed a Crank-Nicolson in time and FE in space algorithm for BV-
Voigt model of geophysical flows, which presents good advantages from the computational
point of view. We proved the algorithm conserves energy, is unconditionally stable and
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optimally convergent. Lastly, we tested the BV-Voigt model in a traditional benchmark
test which we showed it produces an accurate solution in a coarse mesh, the same in which
the BV model solution degenerates. Also, in this test, the BV-Voigt model compared
favorably with the analogous BV-α model.
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