Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Sobre o cálculo dos pontos e dos pesos para a quadratura de Gauss-Gegenbauer quando $0 < \lambda < 1$

Lourenço de Lima Peixoto¹

Departamento de Matemática, UFMG, Belo Horizonte, MG,

Formação Geral, IFMG, Congonhas, MG

Resumo. Dois métodos são comparados para o cálculo dos pontos e dos pesos para a quadratura de Gauss-Gegenbauer quando $0 < \lambda < 1$: o método do autossistema e o método de Newton-Raphson. A exatidão e o tempo de execução de ambos os métodos são comparados. O método de Newton-Raphson com uma dada aproximação inicial possui convergência garantida e são obtidas desigualdades para os zeros dos polinômios de Gegenbauer.

Palavras-chave. Gauss-Gegenbauer, Autossistema, Newton-Raphson

1 Introdução

A quadratura de Gauss-Gegenbauer aproxima integrais do tipo $\int_{-1}^{1} (1-x^2)^{\lambda-\frac{1}{2}} f(x) \, dx$, $\lambda > -\frac{1}{2}, \ \lambda \neq 0$. Os n pontos de tal quadratura são os zeros do polinômio de Gegenbauer $P_n^{(\lambda)}$ de grau n. O método do autossistema consiste em calcular os pontos como sendo os autovalores da matriz de Jacobi cujos autovetores podem ser utilizados para o cálculo dos respectivos pesos. Alternativamente o método de Newton-Raphson (NR) pode calcular os zeros do polinômio $P_n^{(\lambda)}$ e os pesos podem ser obtidos por fórmulas conhecidas. Nosso objetivo é comparar a exatidão e o tempo de execução de ambos os métodos quando $0 < \lambda < 1$, pois a exatidão destes métodos interfere diretamente na aproximação da integral.

2 Metodologia

Os pontos e pesos para o autossistema são calculados com a sub-rotina SGAUSQ na linguagem FORTRAN disponível em netlib.org/go/sgausq.f a qual utiliza o algoritmo de [1] que é o mais indicado para o autossistema. Tal sub-rotina foi criada especificamente para este fim. (Uma rotina em MATLAB que implementa o algoritmo de [1] com a função eig é menos eficiente). Elaboramos uma sub-rotina em FORTRAN que implementa o algoritmo do método de NR. Ambas sub-rotinas foram executadas com precisão dupla para diversos valores de n e $\lambda \in (0,1)$. Para comparar a exatidão utilizamos a seguinte medição

¹lourencolp@ufmg.br, lourenco.peixoto@ifmg.edu.br

2

para o erro $\varepsilon\{V\}$ de um vetor $V=(v_1,\ldots,v_n)$, a saber $\varepsilon\{V\}=\max_{1\leq k\leq n}\left|\frac{v_k-v_k^{exato}}{v_k^{exato}}\right|$, $v_k^{exato}\neq 0$. Calculamos $\varepsilon\{X\}$ e $\varepsilon\{W\}$ onde os elementos dos vetores X e W são os pontos e os pesos para um dado n. O valor exato v_k^{exato} é considerado aquele fornecido pela subrotina SGAUSQ com precisão estendida. A Tabela 1 exibe os resultados dos erros cometidos pelos dois métodos para alguns valores de n quando $\lambda=0.8$ além do tempo gasto por eles em segundos. Resultados semelhantes foram obtidos com outros valores de $\lambda\in(0,1)$.

Tabela 1: Erros cometidos e tempo em segundos de ambos os métodos quando $\lambda = 0.8$.

n	$\varepsilon\{X_{aut}\}$	$\varepsilon\{X_{NR}\}$	$\varepsilon\{W_{aut}\}$	$\varepsilon\{W_{NR}\}$		
	$5,069 \cdot 10^{-14}$					
987	$5,564 \cdot 10^{-14}$	$8,144\cdot10^{-16}$	$6,942 \cdot 10^{-11}$	$1,428 \cdot 10^{-11}$	0,05133	0,00855
10946	$3,723\cdot10^{-12}$	$4,156\cdot10^{-15}$	$8,619\cdot10^{-9}$	$4,927 \cdot 10^{-10}$	5,53066	0,73391

3 Conclusões

Concluimos que o método de NR fornece maior exatidão tanto para os pontos quanto para os pesos, além de ser mais rápido. Em [3,5] encontram-se comparações entre o método do autossistema e outros métodos quanto à exatidão deles quando $\lambda=1/2$. Tais autores concluem que o método do autossistema definitivamente não é o mais preciso quando $\lambda=1/2$. Nós comparamos o método de NR com o método do autossistema no intervalo $0<\lambda<1$ obtendo semelhante conclusão. Entretanto, o método de NR requer uma boa aproximação inicial para os zeros do polinômio de Gegenbauer. Demonstramos que, com uma fórmula indicada por nós para a aproximação inicial, o método de NR sempre converge. Consequentemente estabelecemos uma desigualdade inferior para cada um dos zeros positivos do polinômio de Gegenbauer quando $2<\lambda<3$. Tal desiguldade é forte e se mostra melhor do que a desigualdade apresentada em [2] para o menor zero positivo e também melhor do que uma desigualdade dada em [4] para o maior zero positivo.

Referências

- [1] G. H. Golub and J. H. Welsch, Calculation of Gauss Quadrature Rules, Mathematics of Computation, vol. 23, 221-230+s1-s10, (1969).
- [2] A. Laforgia, Sugli Zeri delle Funzioni di Bessel, Calcolo, vol. 17, 211-220, (1980).
- [3] P. N. Swarztrauber, On Computing the Points and Weights for Gauss-Legendre Quadrature, SIAM Journal on Scientific Computing, vol. 24, 945-954, (2003).
- [4] G. Szegő, Orthogonal Polynomials, American Mathematical Society, 4^a ed., (1975).
- [5] E. Yakimiw, Accurate Computation of Weights in Classical Gauss-Christoffel Quadrature Rules, Journal of Computational Physics, vol. 29, 406-430, (1996).