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Abstract. In this work we evaluate a predictor-multicorrector integration scheme for tran-
sient advection-diffusion-reaction problems using the Dynamic Diffusion method (DD). This
multiscale finite element formulation results in a free parameter method in which the subgrid
scale space is defined using bubble functions whose degrees of freedom are locally eliminated
in favor of the degrees of freedom that live on the resolved scales. The time advancing
scheme assumes that the subscales change in time. The formulation is compared with the
Consistent Upwind Petrov-Galerkin (CAU) method using the same predictor-multicorrector
scheme. Numerical experiments based on benchmark 2D problems were conducted to illus-
trate the behavior of this new algorithm applied to advection-diffusion-reaction equations.
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1 Introduction

For convection-dominated problems, the Galerkin solution exhibits a globally oscillating
character and most of the time is meaningless. Using stabilized or multiscale methods
more accurate and stable results can be obtained [2, 4]. Arruda et al. [1] proposed a
discontinuous two-scale method where an artificial diffusion appears on all scales, named
Dynamic Diffusion method (DD), and which stability and convergence properties do not
rely on tune-up parameters. The additional diffusion is dynamically determined by im-
posing some restrictions on the resolved scale solution in the same spirit of the method
presented in [6]. The methodology improves upon some discontinuous capturing methods
and some subgrid diffusion approaches for transport applications. Here we extend the DD
to transient problems using a continuous approximation setting.

In [8] three time advancing schemes for the DD method are presented, considering static
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and temporal variation of the subscales. All the methods are first-order time approxima-
tion schemes and they seem to be unconditionally stable, but further experiments need
to be done to confirm this behavior. In this work we evaluate a second order predictor-
multicorrector algorithm [7] for the time-marching scheme using temporal variation of the
subscales. The remainder of this work is organized as follows. Section 2 briefly addresses
the multiscale formulation and the time integration scheme. Numerical experiments are
conducted in Section 3 to show the behavior of the proposed methodology for a variety of
benchmark transport problems. Section 4 concludes this paper.

2 Governing Equations and Time Integration Scheme

Consider the time-dependent advection-diffusion-reaction equation: Find u : Ω×(0, tf ] →
R such that

∂u

∂t
−∇ · (κ∇u) + β ·∇u+ σu = f in Ω× (0, tf ),

u = g on Γ× (0, tf ), (1)

u(x, 0) = u0(x) in Ω.

Here, Ω ⊂ R
2 is a polygonal domain with boundary Γ and tf is the final time. Furthermore,

κ is the diffusivity tensor, β is the flow velocity, σ is the reaction coefficient, f is a given
outer source of the unknown scalar quantity u, and u0(x) represents the initial condition
for the solution u. For simplicity, only Dirichlet boundary conditions are considered. It is
assumed that β ∈W 1,∞(Ω), σ ∈ L∞(Ω), g ∈ H1/2(Γ), f ∈ L2(Ω), and that there exists a
constant σ0 such that σ − 1

2∇ · β ≥ σ0 > 0.

For the finite element discretization, consider a triangular partition TH of the domain
Ω. The discrete settings are then defined by introducing the following two spaces: Vh =
{uh ∈ H1

0 (Ω) |u|Ωe
∈ P1(Ωe), ∀Ωe ∈ TH , u|Γ = g} and VB = ⊕|Ωe

V Ωe

B , where P1(Ωe)

represents the set of first order polynomials in Ωe and V Ωe

B = span(ψB). The bubble
function used is a cubic polynomial function defined by ψB = 27N e

1 (x, y)N
e
2 (x, y)N

e
3 (x, y),

where N e
j represents the local finite element function associated with the nodal point

(coarse) j, j = 1, 2, 3 of element Ωe. The DD method [1] for (1) can be given by: find
uE = uh + uB ∈ VE = Vh ⊕ VB with uh ∈ Vh, uB ∈ VB such that

∫

Ω

(

wE
∂uE

∂t
+ wEβ ·∇uE +∇wE · κ∇uE + σwEuE

)

dΩ +

nel
∑

e=1

∫

Ωe

∇wE · ξ(uh)∇uE dΩ =

∫

Ω
wEf dΩ, ∀wE ∈ H1

0 ⊕ VB. (2)

The coefficient ξ(uh) represents the amount of artificial diffusivity added by the numerical
model. Applying the standard finite element approximation on each scale, we arrive at a
local system of ordinary nonlinear differential equations to be solved

[

M e
hh M e

hB

M e
Bh M e

BB

] [

U̇ e
h

U̇ e
B

]

+

[

Ke
hh Ke

hB

Ke
Bh Ke

BB

] [

U e
h

U e
B

]

=

[

F e
h

F e
B

]

, (3)
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where U e
h and U e

B are, respectively, the nodal values of the unknowns uh and uB on
each element Ωe, whereas U̇ e

h and U̇ e
B are their time derivatives. More details of the

local matrices and vectors in (3) can be found in [8]. Considering the assembly of the
local system (3), a predictor-corrector algorithm [7] for typical benchmark problems is
implemented as follows:

Step 1. Predictor Phase (i=0):
U

n+1,0
h = Un

h + (1− α)∆tU̇n
h , U

n+1,0
B = Un

B + (1− α)∆tU̇n
B,

U̇
n+1,0
h = 0, U̇

n+1,0
B = 0

Step 2. Corrector Phase (i=1,2,..):
2.1 Residual Force:
R

n+1,i
1 = Fn+1

h − (MhhU̇
n+1,i
h +MhBU̇

n+1,i
B )− (KhhU

n+1,i
h +KhBU

n+1,i
B )

R
n+1,i
2 = Fn+1

B − (MBhU̇
n+1,i
h +MBBU̇

n+1,i
B )− (KBhU

n+1,i
h +KBBU

n+1,i
B )

2.2 Solve M∗ ∆U̇n+1,i+1
h = F ∗, with M∗ =M1 −N1N

−1
2 M2 and F ∗ = R1 −N1N

−1
2 R2

M1 =Mhh + α∆tKhh, N1 =MhB + α∆tKhB

M2 =MBh + α∆tKBh, N2 =MBB + α∆tKBB

2.3 Update Solution:
U

n+1,i+1
h = U

n+1,i
h + α∆t∆U̇n+1,i+1

h , U̇
n+1,i+1
h = U̇

n+1,i
h +∆U̇n+1,i+1

h

U
n+1,i+1
B = U

n+1,i
B + α∆t∆U̇n+1,i+1

B , U̇
n+1,i+1
B = U̇

n+1,i
B +∆U̇n+1,i+1

B

with ∆U̇n+1,i+1
B = N−1

2 (Rn+1,i
2 −M2∆U̇

n+1,i+1
h )

where Mhh is the global matrix associated to M e
hh and so forth for the other matrices.

Here ∆t is the timestep; subscripts n + 1 and n mean, respectively, the solution on the
timestep n+ 1 and n; α is a parameter, taken to be in the interval [0, 1]; and the matrix
N2 = (MBB +∆tKBB) 6= 0 for ξ(uh) > 0. In 2.2, the small scale space of the unknowns
∆U̇B is condensed onto the resolved scale degrees of freedom, ∆U̇B = N−1

2 (R2−M2∆U̇h),
resulting in a system of ordinary differential equations involving only ∆U̇h. The following
average rule [6] is used to determineξ(ukh): ξ(u

k
h) = ck+1

b ς(h), ck+1
b = ωc̃k+1

b + (1 − ω)ckb

with ω ∈ [0, 1] suitably chosen as ω = 0.5 and c̃k+1
b = 1

2
|R(uk

h
)|

||∇uk

h
||
if ||∇ukh|| > tolξ or zero

otherwise. R(uh) is the residual, tolξ is a user given tolerance, and ς(h) =
√
Ae is the

characteristic sub-grid parameter, where Ae is the area of finite element Ωe, assumed
constant. We fixed three steps in the Corrector Phase (i = 1, 2, 3) at each timestep for the
first two applications in the next section. In the last numerical example we use a tolerance
of 10−4 and a maximum number of 20 iterations at the Corrector Phase.

3 Numerical Studies

We compare the Dynamic Diffusion (DD) method with the Consistent Upwind Petrov-
Galerkin (CAU) method [5] with the same time-marching predictor-multicorrector algo-
rithm [7]. In the experiments, the domain Ω is discretized into N -by-N cells with two
triangular elements in each cell, resulting in (N + 1)2 nodes and N2 elements. The first
experiment is a steady-state advection dominated problem presented in [3]. The flow is
a rigid rotation about the center of a unit square domain, Ω = [−0.5, 0.5] × [−0.5, 0.5],
with velocity components given by βx = −y and βy = x, σ = f = 0, the diffusivity tensor
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is κ = ǫI with ǫ = 10−8 and I the 2-by-2 identity matrix. On the external boundary of
the square u is set to zero, and on the internal ’boundary’ OA = {x = 0;−0.5 ≤ y ≤ 0},
u is prescribed to be a sine hill. The initial conditions are u0 = −sin(2π y) on OA

and u0 = 0 on the rest of the domain. The steady-state solution is obtained when
‖un − un−1‖ < 0.01 ‖un‖. We use a mesh with 40-by-40 cells, a fixed timestep size
of ∆t = 0.1, and tolξ = 10−10. The exact solution is essentially a pure advection of the
OA boundary condition along the circular streamlines. The elevation of u using CAU and
DD schemes is shown in Figure 1. Observe that both nonlinear methods (CAU and DD)
introduce a non-physical dissipation at the internal border, see Figure 1. However, the
DD method performs better than the CAU scheme as shown in Figure 2.
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Figure 1: Advection in a rotating flow field: elevation of u.
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Figure 2: Advection in a rotating flow field: CAU and DD solutions for y = −0.25.

The second problem has as the exact solution a circular bubble with extremely sharp
layers (see Figure 3(a)). The following parameters are chosen: κ = ǫI with ǫ = 10−4

and I the identity matrix 2 × 2, σ = 2 and velocity field β = (βx, βy)
T with βx =

−2(y − 1)[r20 − (x − x0)
2 − (y − y0)

2], βy = 2(x − 1)[r20 − (x − x0)
2 − (y − y0)

2] if 0 ≤
(x − x0)

2 − (y − y0)
2 ≤ r20, βx = βy = 0 otherwise, and x0 = y0 = 0.5, r0 = 0.25.

The source force and Dirichlet boundary conditions are chosen so that the exact solution
is u(x, y) = 1

2 + 1
πarctg

[

a(r20 − (x− x0)
2 − (y − y0)

2)
]

, a = 1000. The initial solution is
zero. We use a mesh with 40-by-40 cells, a fixed timestep size of ∆t = 0.5 and steady-state
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solution is obtained when ‖un − un−1‖ < 10−4 ‖un‖. The solution obtained by the DD
scheme can represent the region of high gradient without oscillations, but with a relatively
diffusive behavior, as can be best seen by comparing their level curves with the exact
solution in Figure 3.
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(a) Contours of Exact Solution.
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(b) Elevation of the Exact Solution.
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(c) Contours of CAU Solution.
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(d) Elevation of the CAU Solution.
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(e) Contours of DD Solution.
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(f) Elevation of the DD Solution.

Figure 3: Solutions of the 2D advection-diffusion-reaction problem.

In this last numerical experiment, we solve a transient problem. A Gaussian “cone” is
advected with zero diffusion (κ = 0) along a circular path centered at the origin and
interior to a square domain of size [0, 10] × [0, 10]. The initial data is a smooth cone
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function centered at (5.0, 7.5): u0(x, y) = e−0.5r, with r = (x − 5)2 + (y − 7.5)2. The
boundary condition is u(x, y) = 0 on Γ, and the rotational flow field is: β = (βx, βy)

T ,
where βx = −(y − 5) and βy = (x − 5). A 40-by-40 cells and a fixed timestep of 0.04
time units are chosen, and the simulation is carried out for a single rotation of period
(t = 6.28). Figure 4 shows the contours of the numerical solutions obtained using CAU
and DD schemes at the initial position (t = 0) and the subsequent steps t = 1.6, t = 3.16
and t = 6.28. The diffusive behavior of the DD schemes is also confirmed here, see Figure 5.
Once more the DD method with the predictor-corrector scheme had a performance better
than the CAU method.

(a) CAU Solution. (b) DD Solution.

Figure 4: Solutions of the rotating cone (clockwise from top left) at t=0, 1.6, 3.16, 6.28.
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Figure 5: Solution u(x = 5, y) of the rotating cone at t = 6.28.

4 Conclusions

In this work we evaluated a predictor-multicorrector integration scheme for transient ad-
vection-diffusion-reaction problems using the Dynamic Diffusion method. In the numerical
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experiments we considered advection in a rotating flow field, a circular bubble with ex-
tremely sharp layers and a transient pure advection cone transport. The solutions obtained
by the DD scheme can represent the region of high gradient without oscillations, but with
a slightly diffusive behavior. However, the approximate solutions obtained with the DD
method were less diffusive than the CAU method. Future works include convergence and
stability of the transient scheme and new characteristic sub-grid parameters, such as the
velocity field and the length scale at which the subgrid inertial effects take place.
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