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Abstract The discovery of cause-effect relationships in signals from industrial processes is a challenging problem. A data-

driven method to achieve this relation is the transfer entropy, a method based on the conditional probability density functions that 
measures directionality of variation. This method requires several parameters that must be properly chosen to avoid misleading 

results. In this work, the analysis of these parameters in the transfer entropy calculations is performed, and a methodology is pro-

posed for their selection. The utility of the proposed approach is illustrated by several examples including the analysis of routine 
operating data in an industrial case study. 
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1    Introduction 

Detection and diagnosis of plantwide abnormalities 

and disturbances are major problems in process in-

dustry. To isolate a fault in large-scale complex sys-

tems is particularly challenging because of the high 

degree of interconnections among different parts in 

the system. A simple failure may propagate along 

information and affect other parts of the system. To 

determine the root cause of certain abnormality, it is 

important to capture the process connectivity and 

find the connecting pathways. 

Investigation of cause-effect relationships 

among variables, events or objects have been the 

fundamental questions of most natural and social 

sciences over the history of human knowledge (Shin-

dler, 2007). The discovery of cause-effect relation-

ships in signals from industrial processes is useful to 

confirm and discover known and unknown signal 

flow paths and subsequently use this information to 

find the root cause of process faults (Marques, 2013). 

Causality can be understood in terms of a flow 

among processes, expressed and analysed mathemat-

ically. Current statistics understands causal inference 

as one of its most important problems (Shindler, 

2007). 

Data-driven methods provide one of the ways to 

find the causal relationships between process varia-

bles. A few data-based methods are capable of de-

tecting the causal relationships for linear processes. 

In the frequency domain, directed transfer functions 

and partial directed coherence are widely used in 

brain connectivity analysis. Other methods such as 

Granger causality, path analysis, and cross-

correlation analysis with lag-adjusted variables are 

commonly used (Duan, et al., 2013). Granger cau-

sality analysis (Granger, 1969) is used mainly in the 

areas of econometrics and neuro-sciences. This tech-

nique has also been applied recently to find the root 

cause of plantwide oscillations from an industrial 

data. (Yuan et al., 2012) Methods based on Transfer 

entropy (Schreiber, 2000) have also been used for the 

same purpose. This method exploits conditional 

probabilities to determine cause and effect relation-

ships in process data. Recently (Duan, et al., 2013) 

proposed the direct transfer entropy concept, an im-

provement to detect whether there is a direct infor-

mation or not. This approach requires the choice of 

the size of the embedded vector and also the predic-

tion horizon. If the prediction horizon is smaller then 

an existing time delay, no causality is detected. Since 

data is quantized for prediction, some care is also 

required to the number of bins.  

This paper is organized as follows. In Section 2, 

an overview of transfer entropy method and the pa-

rameters choice is presented. Section 3 describes the 

implementation and shows some examples, followed 

by concluding remarks in Section 4. 

2   Causality via transfer entropy 

In Information Theory, for a system consisting of 

more than one component, important information on 

its structure can be obtained by measuring to which 

extent the individual components contribute to in-

formation production and at what rate they exchange 

information among each other. In Schreiber(2000) 

transfer entropy is proposed as the measure that 

shares some of the desired properties of mutual in-

formation but takes the dynamics of information 

transport into account. With minimal assumptions 

about the dynamics of the system and the nature of 

their coupling, one will be able to quantify the ex-

change of information between two systems, sepa-

rately for both directions, and, if desired, conditional 

to common input signals. 

Suppose two systems that generates events (x 

and y), the entropy rate that is defined as the amount 

of additional information required to represent the 

value of the next observation of one of the systems: 

ℎ1 =  − ∑ 𝑝(𝑥𝑛+1, 𝑥𝑛 , 𝑦𝑛).  

𝑥𝑛+1,𝑥𝑛,𝑦𝑛

 (1)

log𝑎 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛)

Suppose that the observation xn+1 was not de-

pendent on the current observation yn: 
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ℎ2

=  − ∑ 𝑝(𝑥𝑛+1, 𝑥𝑛 , 𝑦𝑛) log𝑎 𝑝(𝑥𝑛+1|𝑥𝑛)

𝑥𝑛+1,𝑥𝑛,𝑦𝑛

 (2) 

Now, the quantity h1 represents the entropy rate 

for the two systems, and h2 represents the entropy 

rate assuming that xn+1 is independent of yn. Thus, the 

transfer entropy is  

ℎ2 − ℎ1

=  − ∑ 𝑝(𝑥𝑛+1, 𝑥𝑛 , 𝑦𝑛) log𝑎 𝑝(𝑥𝑛+1|𝑥𝑛)

𝑥𝑛+1,𝑥𝑛,𝑦𝑛

+ 

∑ 𝑝(𝑥𝑛+1, 𝑥𝑛 , 𝑦𝑛) log𝑎 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛) 

𝑥𝑛+1,𝑥𝑛,𝑦𝑛

= 

 

∑ 𝑝(𝑥𝑛+1, 𝑥𝑛 , 𝑦𝑛) log𝑎

𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑛)

𝑝(𝑥𝑛+1|𝑥𝑛)
 

𝑥𝑛+1,𝑥𝑛 ,𝑦𝑛

 (3) 

 

There are actually two equations for the transfer 

entropy, because of its inherent asymmetry. The 

prediction horizon can be extended and become a 

parameter h 

𝑇𝑦→𝑥

= ∑ 𝑝(𝑥𝑛+ℎ, 𝑥𝑛 , 𝑦𝑛)log (
𝑝(𝑥𝑛+ℎ|𝑥𝑛 , 𝑦𝑛)

𝑝(𝑥𝑛+ℎ|𝑥𝑛)
)

𝑥𝑛+ℎ,𝑥𝑛,𝑦𝑛

 

 

(4) 

𝑇𝑥→𝑦

= ∑ 𝑝(𝑦𝑛+ℎ , 𝑦𝑛 , 𝑥𝑛)log (
𝑝(𝑦𝑛+ℎ|𝑦𝑛 , 𝑥𝑛)

𝑝(𝑦𝑛+ℎ|𝑦𝑛)
)

𝑦𝑛+ℎ,𝑦𝑛,𝑥𝑛

 

 

(5) 

Substituting the joint probabilities (6) and (7) 

𝑝(𝑥𝑛+h|𝑥𝑛 , 𝑦𝑛) =  
𝑝(𝑥𝑛+ℎ, 𝑥𝑛 , 𝑦𝑛)

𝑝(𝑥𝑛 , 𝑦𝑛)
 (6) 

𝑝(𝑥𝑛+h|𝑥𝑛) =  
𝑝(𝑥𝑛+ℎ, 𝑥𝑛)

𝑝(𝑥𝑛)
 (7) 

the transfer entropy equations becomes 

𝑇𝑦→𝑥 = ∑ 𝑝(𝑥𝑛+ℎ, 𝑥𝑛 , 𝑦𝑛).

𝑥𝑛+ℎ,𝑥𝑛,𝑦𝑛

 

log (
𝑝(𝑥𝑛+ℎ , 𝑥𝑛, 𝑦𝑛). 𝑝(𝑥𝑛)

𝑝(𝑥𝑛 , 𝑦𝑛). 𝑝(𝑥𝑛+ℎ , 𝑥𝑛)
) 

(8) 

𝑇𝑥→𝑦 = ∑ 𝑝(𝑦𝑛+ℎ , 𝑦𝑛 , 𝑥𝑛).

𝑦𝑛+ℎ,𝑦𝑛,𝑥𝑛

 

log ( 
𝑝(𝑦𝑛+ℎ, 𝑦𝑛, 𝑥𝑛). 𝑝(𝑦𝑛)

𝑝(𝑦𝑛 , 𝑥𝑛). 𝑝(𝑦𝑛+ℎ, 𝑦𝑛)
) 

(9) 

Joint PDFs for two stationary variables sequen-

tial in time are denoted by p(xn+1,xn) with the same 

PDF for xn, xn+1, because of stationarity, that 

is, 𝑝(𝑥𝑛) = 𝑝(𝑥𝑛+1), where 1 is the prediction hori-

zon of xn (one step ahead) and will be substituted by 

parameter h. The generalization of this joint PDF is 

the joint PDF for k + l variables giving p(xn,yn), 

where 𝑥𝑛 = [𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−(𝑘−1)] and 𝑦𝑛 =

[𝑦𝑛 , 𝑦𝑛−1, … , 𝑦𝑛−(𝑙−1)] are embedded vectors. The 

parameters k and l are referred to as the embedding 

dimension of x and y, respectively (Bauer, et al., 

2007). 

A special case is when 𝑘 = 0 and 𝑙 ≠ 0, so that the 

transition probability p(xn+h|yn) measures the causal 

relationship between x and y in the sense that y can 

be identified as the cause or driver of x. So the trans-

fer entropy becomes 

𝑇𝑦→𝑥

= ∑ 𝑝(𝑥𝑛+ℎ, 𝑦𝑛)log (
𝑝(𝑥𝑛+ℎ, 𝑦𝑛)

𝑝(𝑥𝑛+ℎ). 𝑝(𝑦𝑛)
)

𝑥𝑛+ℎ,𝑦𝑛

 (10) 

𝑇𝑥→𝑦

= ∑ 𝑝(𝑦𝑛+ℎ, 𝑥𝑛)log (
𝑝(𝑦𝑛+ℎ, 𝑥𝑛)

𝑝(𝑦𝑛+ℎ). 𝑝(𝑥𝑛)
)

𝑥𝑛+ℎ,𝑦𝑛

 (11) 

Small values of transfer entropy suggest no cau-

sality or direction of influence while large values do. 

A threshold using a Monte Carlo method with surro-

gate data was proposed in (Bauer, et al., 2007). In 

this work, the same threshold is used and the values 

above are called significant values. 

2.1 Kernel Estimation 

Before calculating the causality value from transfer 

entropy, joint PDFs and transition probabilities have 

to be constructed from the time series. Estimation of 

the PDF from time series x and y is most commonly 

done with histograms, but due to the high order of 

the joint PDFs (k+l+1 dimensions), the number of 

samples required for the construction via histograms 

is extremely large. Therefore, the use of kernel esti-

mation (Silverman 1986), was proposed in (Bauer, et 

al., 2007). 

The Kernel method gives a more precise estima-

tion of the PDF than histograms by considering the 

exact values of a time series x. A Kernel function K 

is centered at every sample point and summed to give 

an estimate �̂�(𝑥) 

�̂�(𝑥) =
1

𝑁
∑ 𝐾(𝑥 − 𝑥𝑖)

𝑁

𝑖=1

 (12) 

and considering a Gaussian Kernel function, 

𝐾(𝑥 − 𝑥𝑖) =
1

√2𝜋𝜃
exp (−

(𝑥 − 𝑥𝑖)2

2𝜃2
) (13) 

where θ is the estimator width which is adjusted to 

the number of samples N and the standard deviation 

of time series x (Silverman 1986). 

For more than one dimension the Kernel can be ex-

tended to a vector valued data 𝑥 ∈ ℜ𝑑. This method 

as known as Fukunaga method. The estimate �̂�(𝑥) 

can be rewritten as 

�̂�(𝑥) =  
1

𝑛(2𝜋)𝑑 2⁄ |Σ|1 2⁄
∑ exp [−

1

2
(𝑥

𝑛

𝑖=1

− 𝑥𝑖)′Σ−1(𝑥 − 𝑥𝑖)] 

(14) 
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where Σ is the covariance matrix and d is the dimen-

sion of vector x. One can approximate the estimate 

�̂�(𝑥) by a product kernel 

�̂�(𝑥) =
1

𝑛
∑ [∏ 𝐾𝜃𝑘

(𝑥(𝑘) − 𝑥𝑖
(𝑘)

)

𝑑

𝑘=1

]

𝑛

𝑖=1

 (15) 

This approximation used by many researchers 

bring some issues: the parameter θ is calculated for 

each dimension (k+l+1) independently and when 

multiplied they loose their desirable effect, causing 

the sum of probabilities to be smaller than 1, impact-

ing in the TE values. This problem becomes formi-

dable with the dimension d. The Fukunaga method 

uses the covariance matrix to mitigate this problem, 

and will be used in this work. 

The equations presented are continuous, howev-

er, for implementation in a computer the signals must 

be quantized in a discrete grid. The number of ampli-

tude bins is denoted by q and can be set independent-

ly. The increase of q bring a better approximation, 

but in order to achieve a better result the number of 

bins should be limited, since with the increase of bins 

they tend to have probability zero, causing the sum 

of probabilities to be smaller than 1. A threshold will 

be proposed to select q and to limit this effect.  

2.2 Selection of the parameters  

The three parameters required for TE approach are: 

the prediction horizon h and the embedding dimen-

sions k and l. Since these parameters greatly affect 

the calculation of the transfer entropy, a systematic 

method is needed to determine their values. In the 

seminal work Schreiber (2000), the values 𝑘 = 𝑙 =
ℎ = 1 were proposed. Unfortunately, this fixed 

choice is not suitable in some cases, as shown in the 

future examples. In (Bauer, et al., 2007) the values 

𝑘 = 0, 𝑙 = 2 were proposed and h was selected as a 

function of the process dynamics. If the process 

dynamics is known, the parameter can be set accord-

ingly. If a dead time is detected between two signals, 

the optimum value of h is equal to the dead time. 

However, if the process dynamics is unknown, small 

values such as ℎ < 4 should give good results. More 

recently, (Duan, et al., 2013) used the same proce-

dure to determine prediction horizon h, but different 

methods to select the parameters k and l. The embed-

ding dimension k, is determined as the minimum 

nonnegative integer above which the change of en-

tropy rate for the future signal given only his past (e. 

g. Hc(yi+h|yi)) decreases significantly. Based on the 

values of k and h, the embedding dimension l, is 

determined as the minimum positive integer above 

which the change of entropy rate decreases signifi-

cantly. No considerations are made about signal 

quantizing. 

In this work, we use the maximization of TE to 

choose all parameters. First, the parameter h is calcu-

lated with minimum effort, i.e., for 𝑙 = 1 and 𝑘 = 0, 

and the value of h that maximizes the TE will be 

chosen. The importance in selecting h initially comes 

from the need of its value to be higher to an existing 

dead time, very common in industrial processes. If 

the dead time exists and is known, the initial value of 

h is chosen with its value. Second, with the value of 

h, 𝑘 = 0 and l is varied from 1 to 3, selecting the 

value that maximizes the TE. Finally, with parame-

ters h and l chosen, embedding dimension k is varied 

from 0 to 2, to maximize the TE.  

With the increment of dimension is very difficult 

to calculate the kernel. For a dimension higher than 3 

is very difficult to achieve the goal that the sum of all 

probabilities over all bins is equal to 1. 

3 Applications 

In these examples, the Transfer Entropy is computed 

using routines implemented in Matlab. The calculat-

ed values are compared to those computed with fixed 

values 𝑘 = 𝑙 = ℎ = 1 from (Schreiber, 2000) and 

𝑘 = 0, 𝑙 = 2 with h varying from 1 to 4 from (Bauer, 

et al, 2007). 

3.1 Example 1 

This example was used in (Ding, 2008), where two 

models were analysed to show the possibility of 

detecting direct and indirect causality: y affects z 

directly and x indirectly in the first model (Fig.1a)) 

and affects both z and x directly in the second model 

(Fig.1b)). 

 
Figure 1. The two topologies for Example 1 

First, the number of bins is determined in order 

to assure that the sum of probabilities be greater than 

0.98. This threshold was determined according to the 

author’s experience in the examples shown. 

 
Table 1. Effect of number of bins over the sum of probabilities 

Bins ∑ 𝑝(𝑥) ∑ 𝑝(𝑦) ∑ 𝑝(𝑧) 

10 0,9932 0,9858 0,9941 

20 0,9833 0,9819 0,9840 

30 0,9768 0,9797 0,9797 

40 0,9723 0,9736 0,9721 

50 0,9699 0,9680 0,9655 

 

With the signals quantized, the next step is to 

choose the parameters h, l and k for each pair of 

signals. In Figure 3 the TE values are shown for 

parameter h varying from 1 to 5 for all pairwise 
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analysis. The notation TEx→z denotes the transfer 

entropy from x to z. 

 
Figure 2 - TE values for k=0, l=1 and h varying. 

The maximum for TEx→z, TEz→x and TEz→y 

is for ℎ = 2; TEy→z is maximized for ℎ = 1; for 

TEx→y and TEy→x the maximum value is for ℎ = 3. 

 
Figure 3 - TE values for h chosen, k=0 and l varying. 

With h chosen, the parameter l is selected using 

Figure 3: for all pairs 𝑙 = 1 maximizes the TE val-

ues. With values for l and h selected, Figure 4 is then 

used to choose k: the maximum TE value is obtained 

for 𝑘 = 0 for all pairs.  

The result for the selected parameters is shown 

in Table 2, first line in all columns. The second line 

is for 𝑞 = 100, in order to compare with 𝑞 = 20 

used for first line. The third and forth lines contain 

the values using parameters according to (Schreiber, 

2000) and (Bauer, et al., 2007), respectively. The 

bold values are those which are significant. 

 
Figure 4 - TE values for l and h chosen and k varying.   

Table 2. Results for first model and different choice of param-

eters and number of bins 

TErow->col x y z 

x - 0.0288;

0.0068; 

0.0021; 

0.0200 

0.0463;

0.0118; 

0.0298; 

0.0238 

y 0.1587;

0.0431; 

0.0023; 

0.0743 

- 0.2513;

0.0882; 

0.1899; 

0.2167 

z 0.1201;

0.0343; 

0.0713; 

0.0825 

0.0873;

0.0231; 

0.0543; 

0.0420 

- 

 

The comparison of values in first and second 

line in Table 2 shows that when the number of bins is 

increased from 20 to 100 the TE values drop signifi-

cantly. The proposed choice of parameters allow 

achieving significant TE values for all causal rela-

tions previously known. The other choices only ap-

point the causal relation for TEy→z. 

The same procedure was applied to the second 

model of example 1 from (Ding, 2008), with the 

topology shown in Figure 1.b: the results compared 

with the other two approaches are presented in Table 

3. The maximum for TEx→z, TEy→z is for ℎ = 1; 

TEz→x and TEz→y is maximized for ℎ = 2; for 

TEx→y and TEy→x the maximum value is for ℎ = 3. 

With h chosen l and k are selected, the maximum for 

all pairs is obtained for 𝑘 = 0 and 𝑙 = 1. 

 
Table 3. Results for second model and different choice of 

parameter  

TErow->col x y z 

x - 0.0272; 

0.0018; 

0.0260 

0.0512; 

0.0432; 

0.0299 

y 0.2003; 

0.0062; 

0.1236 

- 0.2471; 

0.1699; 

0.1963 

z 0.1686; 

0.1174; 

0.1318 

0.0691; 

0.0529 

0.0368 

- 

 

The parameters chosen allowed achieving signif-

icant values for all causal relations previously 

known. The parameters chosen according to 

(Schreiber, 2000) appointed only the causal relations 

TEy→z, TEz→x, while the parameters chosen accord-

ing to (Bauer, et al., 2007) detected all causal rela-

tions, but with smaller TE values when compared to 

the proposed scheme. The value of TEy→x is higher 

for second model, compared with first model with 

indirect causality from TEy→x. This difference is 
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helpful to detect direct or indirect pathways as pro-

posed in (Duan, et al., 2013). Also, greater values of 

TE are valuable because they must be higher than a 

threshold to be significant.  

3.2 Example 2 

This example uses routine operating data from 

three control loops from a thermoelectric power plant 

(Figure 5). The level loop from a steam drum 

(LIC400) adjusts the set point for the water flow loop 

(FIC408). This flow comes from a reservoir (deaera-

tor) whose level is given by LIC430.  

 
Figure 5 – Diagram of the thermoelectric power plant 

LIC400 affects FIC408: when the level decreas-

es, the flow is increased. Although the flow FIC408 

comes from the tank with level LIC430, it is difficult 

to establish a relationship between them. This may 

happen because the level LIC430 depends on other 

variables and the controller tuning on this level loop 

is detuned or very slow, as should be the case. The 

signals (Figure 6) were differenced for use in the 

algorithms (in order to be covariance stationary). 

 
Figure 6 – Signals from the thermoelectric power plant 

As in the other examples, the number of bins is 

determined using the same threshold of 0.98, with 

different values of q for the variables (Table 4). 

 
Table 4. Effect of number of bins over the sum of probabilities 

Bins ∑ 𝑝(𝐿𝐼𝐶400) ∑ 𝑝(FIC408) ∑ 𝑝(LIC430) 

   q = 10 0,9897 0,9942 0,98576 

   q = 20 0,9778 0,9914 0,98088 

   q = 30 0,9679 0,9869 0,97588 

   q = 40 0,9591 0,9867 0,97308 

   q = 50 0,9614 0,9839 0,96189 

   q = 60 0,9585 0,9826 0,95474 

   q = 70 0,9475 0,9807 0,94899 

 

The procedure to choose parameters k, l, h is 

shown in Figures 7, 8 and 9. 

 
Figure 7 - TE values for l=1, k=0 and h varying.     

 
Figure 8 - TE values for h chosen, k=0 and l varying.

 

Figure 9 - TE values for l and h chosen and k varying.   

The maximum for TELIC400→FIC408, 

TEFIC408→LIC430 and TELIC430→ LIC400 is for ℎ = 5; 

TELIC400→ LIC430 is maximized for ℎ = 9; for TEL-

IC430→ FIC408 and TEFIC408→ LIC400 the maximum value is 

for ℎ = 9. With h chosen embedded dimensions k 

and l are selected, the maximum for all pairs is ob-

tained for 𝑘 = 0 and 𝑙 = 1. 

The results are presented in Table 5. The relation 

between LIC400 and FIC408 is the only one with a 
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significant value. For the other approaches to chose 

the parameters, only the one according to (Bauer, et 

al., 2007) detect the causal relation. These examples 

confirm that the values for l and k are small, in gen-

eral. Thus, 𝑘 = 0 and 𝑙 = 1 is a good initial guess for 

selecting h, with the additional benefit of a lower 

computational effort. If h is smaller then the dead 

time, the TE will be very small. If TE value increases 

and then decreases, the examples have shown this 

maximum to be a suitable choice. Otherwise, the 

search should continue until a given limit (example, 

maximum dead time in the signals, obtained from 

knowledge about the process under analysis). 

Table 5. Results for example 2 and different choice of parame-

ters  

TErow->col LIC400 FIC408 LIC430 

LIC400 - 0.0174; 

0.0000; 

0.0111 

0.0019; 

0.0003; 

0.0009 

FIC408 0.0011; 

0.0004; 

0.0004   

      - 0.0008; 

0.0000; 

0.0000 

LIC430 0.0005; 

0.0002; 

0.0005  

0.0009; 

0.0002; 

0.0006 

      - 

To illustrate the computational effort, the time 

elapsed to calculate the TELIC400→FIC408 for 𝑘 = 0 and 

l varying is shown in Table 6, using a core i3 with 

3.07 Ghz and 4 GB of DDR3.  

Table 6. Time elapsed to calculate the TELIC400→FIC408 for k = 0 

and l varying 

l Time(s) 

1 71.61 

2 73.74 

3 78.22 

4 84.43 

5 87.79 

4   Conclusion 

A proposal to choose the parameters to be used 

in the transfer entropy method, in order to find causal 

relations between variables was here presented. Sev-

eral examples were used to illustrate the methodolo-

gy and it was clear that higher values for the transfer 

entropy were obtained, compared to other methods. 

These higher values allow the use of more robust 

thresholds, which is important in order to avoid false 

positives results.   

The proposed method, choosing initially the 

prediction horizon, brings an interesting result: the 

dimensions of the embedded vectors can be smaller. 

This choice reduces the kernel dimension, reducing 

the computational effort to maximize the value of the 

transfer entropy. 
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