On exponential stability for mixtures with non-constantcoefficients
DOI:
https://doi.org/10.5540/03.2021.008.01.0456Palavras-chave:
Strong stability, Exponential stability, SemigroupsC0, Mixture of materialsResumo
We consider the system modeling a mixture of three materials with frictional dissipationand we show the exponential stability of semigroup associated. We show that the correspondingsemigroup is exponentially stable if and only if the imaginary axis is contained in the resolventset of the infinitesimal generator. In particular this implies the lack of polynomial stability to thecorresponding semigroup.Downloads
Referências
A. Bedford and D. S. Drumheller, Theories of immiscible and structured mixtures,Int. J.Eng. Sci., 21: 863–960, 1983. DOI: 10.1016/0020-7225(83)90071-X.
D. S. Bernstein,Matrix Mathematics: theory, facts and formulas, Princenton, New Jersey,United States, 2009. ISBN: 9780691140391
F. F. C ́ordova Puma, J. E. Mu ̃noz Rivera, The lack of polynomial stability tomixtures with frictional dissipation,J. Math. Anal. and Appl., 446:1882–1897, 2017.DOI:10.1016/j.jmaa.2016.09.003.
F. L. Huang, Strong asymptotic stability theory for linear dynamical systems in Banach spaces.J. Diff. Eq., 104:307–324, 1993. DOI: 10.1006/jdeq.1993.1074.
Z. Liu and S. Zheng,Semigroups associated with dissipative systems, Research Notes in Mathe-matics, vol. 398, Chapman and Hall/CRC, Boca Raton, FL, 1999. ISBN: 9780849306150.
F. Dell,Oro and J. E. Mu ̃noz Rivera, Stabilization of ternary mixtures with frictional dissipa-tion,Asymp. Anal., 89:235–262, 2014. DOI: 10.3233/ASY-141229.
J. Pruss, On the spectrum ofC0-semigroups,Trans. Amer. Math. Soc., 284:847–857, 1984.DOI: 10.2307/1999112.