Deterministic Graph Spectral Sparsification

Fabricio A. Mendoza Granada, Sergio Mercado, Marcos Villagra

Resumo


An important technique in data analysis is principal component analysis or PCA. Given a covariance matrix S, in PCA we need to compute the eigenvector associated to a greatest eigenvalue of S in order to determine the direction of the so-called principal components [3]. It is well know that computation of eigenvalues of general matrices is expensive, and therefore, several authors use techniques of numerical approximation [5]. Furthermore, computations are more efficient whenever the matrices are sparse.


Texto completo:

PDF

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato