Time-space fractional for the Stefan model

Eliana Contharteze Grigoletto, Rubens de Figueiredo Camargo, Michael Vynnycky

Resumo


In this paper, we solve a particular time-space fractional Stefan problem including fractional order derivatives in time and space variables in the Fourier heat conduction equation. For this, we consider fractional time derivative of order α ∈ (0, 1] and fractional # space derivative of order 2β with β ∈ 2 1 , 1 , both in the Caputo sense. Including time and space fractional derivatives, the melt front advances as s ∼ t ξ , where ξ = ξ (α, β), and we can recover sub diffusion, classical diffusion and super-diffusion behaviors. The result for the proposed problem depends on the choice of order of fractional derivatives α and β provided that the choice satisfies the relation 2β/α = 1+β


Palavras-chave


Stefan problems, Time-space fractional, Caputo derivative

Texto completo:

PDF (English)


DOI: https://doi.org/10.5540/03.2020.007.01.0445

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato