A wavelet Galerkin approximation of Fredholm integral eigenvalue problems with bidimensional Haar functions

Autores

  • Saulo P. Oliveira
  • Felipe Wisniewski
  • Juarez S. Azevedo

DOI:

https://doi.org/10.5540/03.2014.002.01.0060

Palavras-chave:

Fredholm integral equations, Galerkin method, 2D Haar wavelets

Resumo

We consider the numerical approximation of homogeneous Fredholm integral equa-tions of second kind. We employ the wavelet Galerkin method with 2D Haar wavelets as shape functions. We thoroughly describe the derivation of the shape functions and present a preliminary numerical experiment illustrating the computation of eigenvalues for a particular covariance kernel.

Downloads

Não há dados estatísticos.

Downloads

Publicado

2014-12-19

Edição

Seção

Métodos Numéricos e Aplicações