A wavelet Galerkin approximation of Fredholm integral eigenvalue problems with bidimensional Haar functions
DOI:
https://doi.org/10.5540/03.2014.002.01.0060Palavras-chave:
Fredholm integral equations, Galerkin method, 2D Haar waveletsResumo
We consider the numerical approximation of homogeneous Fredholm integral equa-tions of second kind. We employ the wavelet Galerkin method with 2D Haar wavelets as shape functions. We thoroughly describe the derivation of the shape functions and present a preliminary numerical experiment illustrating the computation of eigenvalues for a particular covariance kernel.
Downloads
Não há dados estatísticos.
Downloads
Publicado
2014-12-19
Edição
Seção
Métodos Numéricos e Aplicações