Ergodicity of a 2-to-1 baker map
Resumo
We encode a 2-to-l baker map using the so called zip shift map, defined on an extended two-sided symbolic space. Moreover show that the 2-to-l baker map is a (2,4)—Bernoulli transformation. As an application, we show that it is strongly mixing and ergodic.
Palavras-chave
Texto completo:
PDF (English)Referências
Lasota. A., Mackey, M. Chãos, Fractals, and Noise, Stochastic Aspects of Dynamics, Springer- Verlag New York Tnc, volume 97, 1994.
Mehdipour, P., Lamei, S., An n-to-1 Smale Horseshoe, (pre-print-2020).
Mehdipour, P., Martins, N. Encoding an n-to-1 Baker Map, Çpre-print-2020).
Oliveira, K., Viana, M. Foundations of ergodic theory, Cambridge Studies in Advanced Mathematics, 2015.
Shub, M. What is... a horseshoe?, Notices of the American Mathematical Society, volume 52, pages 516-517, 2005.
Walters, P. An introduction to Ergodic Theory. Graduate texts in mathematics, Springer-Verlag, 1982.
DOI: https://doi.org/10.5540/03.2021.008.01.0404
Apontamentos
- Não há apontamentos.
SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120