Modelos epidemiológicos fracionários: o que se perde, o que se ganha, o que se transforma?

Sandro Rodrigues Mazorche, Noemi Zeraick Monteiro

Resumo


Buscamos investigar o uso de derivadas fracionárias no modelo SIR, tanto analiticamente quanto por meio de simulações. Nos interessamos pelos questionamentos de persistência de características na transição do modelo inteiro para o fracionário.  Em particular, analisamos unidades, conservação da população, a impossibilidade de utilizar a derivada de Riemann-Liouville, cuidados com a não negatividade e a monotonicidade e, finalmente, o ponto de pico e os equilíbrios.


Palavras-chave


Modelo SIR; Derivadas Fracionárias; Persistência de Características

Texto completo:

PDF

Referências


Ahmad, A., Farman, M., Ahmad, M. O., Raza, N. and Abdullah, M. Dynamical behavior of SIR epidemic model with non-integer time fractional derivatives: a mathematical analysis, Int. J. Adv. Appl. Sei., 5:123-129, 2018. DOI: 10.21833/ijaas.2018.01.016.

Almeida, R. Dynamical analysis of a fractional SIR model with treatment and quarantine, Chaotic Modeling and Simulation, 2:115-124, 2020.

Angstmann, C. N., Henry, B. I. and McGann, A. V. A fractional-order infectivity and recovery SIR model, Fractal and Fractional, 1:11, 2017. DOI: 10.3390/fractalfract 1010011.

Brauer, F. and Castillo-Chavez, C. Mathematical models in population biology and epidemiology. Vol. 2. Springer, New York, 2012.

Barros, L.C., Lopes, M. M., Simões, F. S. P., Esmi, E., Santos, J.P.C. dos, and Sánchez, D. E. The memory effect on fractional calculus: an application in the spread of Covid-19, Computational and Applied Mathematics, 40:72, 2021. DOI: 10.21203/rs.3.rs-41084/vl.

Choi, S. K. and Koo, N. The monotonic property and stability of solutions of fractional differen- tial equations, Nonlinear Analysis: Theory, Methods and Applications, 74:6530-6536, 2011. DOI: 10.1016/j.na.2011.06.037.

Diethelm, K. Monotonicity of functions and sign changes of their Caputo derivatives, Fractional Calculus and Applied Analysis, 19:561-566, 2016. DOI: 10.1515/fca-2016-0029.

Diethelm, K. The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media, Berlin, 2010.

Dokoumetzidis, A., Magin, R. and Macheras, P. A commentary on fractionalization of multi-compartmental models, Journal of Pharmacokinetics and Pharmacodynamics, 37:203-207, 2010. DOI: 10.1007/sl0928-010-9153-5.

Dokoumetzidis, A., Magin, R. and Macheras, P. Fractional kineties in multi-compartmental systems, Journal of Pharmacokinetics and Pharmacodynamics, 37:507-524, 2010. DOI: 10.1007/sl0928-010- 9153-5.

Farman, M., Ahmad, A., Muslim, H. and Ahmad, M. O. Dynamical behavior of Hepatitis B fractional- order model with modeling and simulation, Journal of Biochemical Technology, 10:11-17, 2019.

González-Parra, G., Arenas, A. J. and Chen-Charpentier, B. M. A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1), Mathematical Methods in the Applied Sciences, 37:2218-2226, 2013. DOI: 10.1002/mma.2968.

Guo P., Changpin L. and Guanrong C. On the fractional mean-value theorem, International Journal of Bifurcation and Chãos, 22:1250104(1-6), 2012. DOI: 10.1142/S0218127412501040.

Hasan, S., Al-Zoubi, A., Freihet, A., Al-Smadi, M. and Momani, S. Solution of fractional SIR epidemic model using residual power series method, Appl. Math. Inf. Sei, 13:153-161, 2019. DOI: 10.18576/amis/130202.

Hethcote, H. W. The mathematics of infectious diseases, SIAM review, 42:599-653, 2000. DOI: 10.1137/S0036144500371907.

Kermack, W. O. and McKendrick, A. G. Contributions to the mathematical theory of epidemics-I (1927), Bulletin of Mathematical Biology, 53:33-55, 1991. DOI: 10.1007/BF02464423.

Khan, M.A. and Atangana, A. Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Engineering Journal, 59:2379-2389, 2020. DOI: 10.1016/j.aej.2020.02.033.

Monteiro, N. Z. and Mazorche, S. R. Fractional derivatives applied to epidemiology, Trends in Com­ putational and Applied Mathematics, 22:157-177, 2021. DOI: 10.5540/tcam.2021.022.02.00157.

Oliveira, E. C de. Solved exercises in fractional calculus. Springer International Publishing, Cham, 2019.

Oldham, K. and Spanier, J. The fractional calculus theory and applications of differentiation and integration to arbitrary order. Academic Press, New York, 1974.

Ortigueira, M. D. and Machado, J. A. T. What is a fractional derivative?, Journal of Computational Physics, 293:4-13, 2015. DOI: 10.1016/j.jcp.2014.07.019.

Podlubny, I. Fractional differential equations: an introduction to fractional derivatives. Academic Press, San Diego, 1999.




DOI: https://doi.org/10.5540/03.2021.008.01.0448

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato