An Optimisation on the Grassmannian with Applications toQuantum Chemistry
Resumo
Palavras-chave
Texto completo:
PDFReferências
Absil, P.-A. and Mahony, R. and Sepulchre, R. Riemannian Geometry of Grassmann Mani-folds with a View on Algorithmic Computation,Acta Appl. Math., 2004, 80, 199–220, DOI:10.1023/B:ACAP.0000013855.14971.91.
Aoto, Y. A and da Silva M. F. Calculating the distance from an electronic wave function tothe manifold of Slater determinants through the geometry of Grassmannians,Phys. Rev. A,2020, 102, 052803, DOI: 10.1103/PhysRevA.102.052803.
Bowen, R. M. and Wand, C.-C.Introduction to Vectors & Tensors. Dover, 2008.
Griffiths, P. and Harris, J.Principles of Algebraic Geometry. Wiley, 1978.
Helgaker, T. and Jørgensen, P. and Olsen, J.Molecular Electronic Structure Theory. Wiley,2000.
Lischka H.et. al. Multireference Approaches for Excited States of Molecules,Chem. Rev.,2018, 118, 7293, DOI: 10.1021/acs.chemrev.8b00244.
Messiah, A.Quantum Mechanics. Dover, 1999.
Mundim, K. C Anticommuting space: an alternative formulation of the wavefunction antisym-metry description,J. Phys. France, 1989, 50, 11–17, DOI: 10.1051/jphys:0198900500101100.
Mundim, K. C and Mundim, M. S. P. ́Algebra de Grassmann e a Teoria Quˆantica,RevistaBrasileira de Ensino de F ́ısica, 1997, 19, 209–233.
DOI: https://doi.org/10.5540/03.2021.008.01.0356
Apontamentos
- Não há apontamentos.
SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120