Uma proposta do tipo ponto-proximal para o problema dequase-equilíbrio
DOI:
https://doi.org/10.5540/03.2021.008.01.0503Palavras-chave:
Problema de quase-equilíbrio, Método ponto-proximal, bifunção monótonaResumo
Neste trabalho, estendemos os métodos propostos por Moudafi [J. Nat. Geom 15:91-100, 1999] e Iusem e Sosa [Optimization 52:301-316, 2003] para o cenário de problemas de quaseequilíbrio. Analisamos as propriedades do método do tipo ponto-proximal proposto e provamos, sob hipóteses usuais, a convergência do método para uma solução do problema. Resultados numéricos preliminares são reportados.
Downloads
Referências
Bento, G., Cruz Neto, J. X., Lopes, J. O., Soares Jr, P. A., Soubeyran, A. Generalized proximaldistances for bilevel equilibrium problems. SIAM Journal on Optimization, 26(1):810–830,2016.
Bigi, G., Castellani, M., Pappalardo, M. and Passacantando, M. Nonlinear ProgrammingTechniques for Equilibria. InEURO Advanced Tutorials on Operational Research. Springer,2019. ISSN: 2364-687X.
Bigi, G., Passacantando, M. Gap functions for quasi-equilibria. Journal of Global Optimiza-tion, 66(4):791–810, 2016.
Blum, E., Oettli, W. From optimization and variational inequalities to equilibrium problems.The Mathematics Student, 63(1–4):123–145, 1994.
Cruz Neto, J. X., Santos, P., Silva, R. C. M., Souza, J. C. O. On a Bregman regularizedproximal point method for solving equilibrium problems. Optimization Letters, 13(5):1143–1155, 2019.[6] Facchinei, F., Kanzow, C. Generalized Nash equilibrium problems. Annals of Operations Re-search, 175(1):177–211, 2010.
Hogan, W. Point-to-set maps in mathematical programming. SIAM Review. 15:591–603, 1973.
Iusem, A., Kassay, G., Sosa, W. On certain conditions for the existence of solutions of equili-brium problems. Mathematical Programming, 116(1):259–273, 2009.
Iusem, A., Sosa, W. On the proximal point method for equilibrium problems in Hilbert spaces.Optimization, 59:1259–1274, 2010.
Moudafi, A. Proximal point algorithm extended to equilibrium problems. Journal of NaturalGeometry, 15(1-2):91–100, 1999.[11] Santos, P. J. S., O problema de quase-equil ́ıbrio: Uma abordagem do tipo-Newton regulari-zado, Tese de Doutorado, UFRJ, 2018.
Santos, P. J. S., Santos, P. S. M., Scheimberg, S. A proximal Newton-type method for equili-brium problems. Optimization Letters, 12(5):997–1009, 2018.
Santos, P. J. S., Santos, P. S. M., Scheimberg, S. A Newton-type method for quasi-equilibriumproblems and applications. Preprint, 1–24, 2019.
Santos, P. S. M., Scheimberg, S. An inexact subgradient algorithm for equilibrium problems.Computational & Applied Mathematics, 30:91 – 107, 2011.
Strodiot, J. J., Nguyen, T. T. V., Nguyen, V. H. A new class of hybrid extragradient algorithmsfor solving quasi-equilibrium problems. Journal of Global Optimization, 56(2):373–397, 2013.
Van, N. T. T., Strodiot, J. J., Nguyen, V. H., Vuong, P. T. An extragradient-type method forsolving nonmonotone quasi-equilibrium problems. Optimization, 67(5):651–664, 2018.
Zhang, J., Qu, B., Xiu, N. Some projection-like methods for the generalized Nash equilibria.Computational Optimization and Applications, 45(1):89–109, 2010.