Necessary optimality conditions of KKT type for interval programming problems
Resumo
This work is concerned with mathematical programming problems with inequality constraints in which the objective function is interval-valued. Necessary optimality conditions of Karush-Kuhn-Tucker type are derived through a geometric approach and the use of the generalized Hukuhara differentiability concept.
Palavras-chave
Texto completo:
PDF (English)Referências
Inuiguchi, M. and Kume, Y. Goal programming problems with interval coefficients and target intervals, Eur. J. Oper. Res., 52(3):345-360, 1991. DOI: 10.1016/0377-2217(91)90169-V.
Osuna-Gómez, R., Chalco-Cano, Y., Hernández-Jiménez, B. and Ruiz-Garzón, G. Optimality conditions for generalized differentiable interval-valued functions, Inform. Sciences, 321:136- 146, 2015. DOI: 10.1016/j.ins.2015.05.039.
Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y. and Ruiz-Garzón, G. New efficiency conditions for multiobjective interval-valued programming problems, Inform. Sciences, 420:235-248, 2017.
Pal, B. B., Kumar, M. and Sen, S. A priority-based goal programming method for solving academic personnel planning problems with interval-valued resource goals in university man- agement system, Int. J. Appl. Manag. Sei., 4(3):284-312, 2012.
Stefanini, L. and Arana-Jiménez, M. Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability, Fuzzy Set. Syst., 362:1-34, 2019. DOI: 10.1016/j.fss.2018.04.009. 6
Stefanini, L. and Bede, B. Generalized Hukuhara differentiability of interval-valued func tions and interval differential equations, Nonlinear Anal.-Theor., 71 (3): 1311-1328, 2009. DOI: 10.1016/j.na.2008.12.005.
DOI: https://doi.org/10.5540/03.2021.008.01.0452
Apontamentos
- Não há apontamentos.
SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120