Single-Level Differentiability for Interval-valued Functions

Ulcilea A. S. Leal, Gino Maqui, Geraldo N. Silva, Weldon Lodwick

Resumo


This study uses the theory of single-level difference for interval-valued functions to propose the concept of single-level differentiability, illustrate its calculations, and investigate how its single-level derivative (SL-derivative) relates to other mathematical derivatives.


Palavras-chave


Interval space; C-difference; Intervalar-valued function; SL-derivative

Texto completo:

PDF (English)

Referências


J.P. Aubin and A. Cellina. Differential Inclusions. Springer-Verleg, New York, 1984.

J.P. Aubin and H. Frankowska. Set-Valued Analysis. Birkhauser, Boston, 1990.

B. Bede and S. G. Gal. “Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations”. In: Fuzzy Sets Syst 151 (2005), pp. 581–599.

Y. Chalco-Cano, W. A. Lodwick, and B. Bede. “Single level constraint interval arithmetic”. In: final revision into Fuzzy Sets and Systems (2014).

Y. Chalco-Cano and H. Román-Flores. “On the new solution of fuzzy differential equations”. In: Chaos, Solitons and Fractal 38 (2008), pp. 112–119. 6

Y. Chalco-Cano et al. “Calculus for interval-valued functions using generalized Hukuhara derivative and applications”. In: Fuzzy Sets and Systems 219 (2013), pp. 49–67.

D Dubois and H Prade. “Inverse operations for fuzzy numbers”. In: IFAC Proceedings Volumes 16.13 (1983), pp. 399–404.

R. W. Floyd and R. Beigel. The Language of Machines: An Introduction to Computability and Formal Languages. New York, NY, USA: Computer Science Press, Inc., 1994. isbn: 0-7167-8266-9.

M. Hukuhara. “Intégration des applications mesurables dont la valeur est un compact convex”. In: Funkcial Ekvac 10 (1967), pp. 205–229.

O. Kaleva. “Fuzzy differential equations”. In: Fuzzy Sets and Systems 24.3 (1987). Fuzzy Numbers, pp. 301 –317. issn: 0165-0114. doi: http : / / dx . doi . org / 10 . 1016 / 0165 - 0114(87 ) 90029 - 7. url: http : / / www . sciencedirect . com / science / article / pii / 0165011487900297.

W. A. Lodwick. “Constrained Interval Arithmetic”. In: CCM Report 138 (1999).

S. Markov. “Calculus for Interval Functions of a Real Variable”. In: Computing 22 (1979), pp. 325–337.

R. E. Moore. “Interval analysis”. In: Prince-Hall, Englewood Cliffs, NJ (1969).

N V Plotnikova. “Systems of linear differential equations with π-derivative and linear differential inclusions”. In: Sbornik: Mathematics 196.11 (2005), pp. 1677–1691. doi: 10.1070/ sm2005v196n11abeh003726. url: https://doi.org/10.1070%2Fsm2005v196n11abeh003726.

D. Pompeiu. Sur la continuité des fonctions de variables complexes (Thèses). authier-Villars, Paris, 1905.

L. Stefanini. “A generalizetion of Hukuhara difference for interval and fuzzy arithmetic”. In: Series on Advances in Soft Computating 48 (2008).

L. Stefanini and B. Bede. “Generalized Hukuhara differentiability of interval-valued functions and interval differential equations”. English. In: Nonlinear Analysis 71 (2009), pp. 1311– 1328. doi: 10.1016/j.na.2008.12.005.

L. Stefanini and B. Bede. “Some notes on generalized Hukuhara differentiability of intervalvalued functions and interval differential equations”. In: Elsevier Science (2012)




DOI: https://doi.org/10.5540/03.2022.009.01.0304

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato