Aproximação por diferenças finitas da derivada fracionária ψ-Caputo

Martha Aurora Parra Pulido, J. Vanterler da Sousa Costa, E. Capelas de Oliveira

Resumo


Neste trabalho, discutimos uma aproximação numérica por diferenças finitas para a
derivada fracionária ψ-Caputo chamada aproximação L1-2 ψ-Caputo. Nesse sentido, apresentamos a definição da aproximação, o estudo do erro, um exemplo e duas aplicações a fim de elucidar o resultado investigado.


Palavras-chave


Derivada fracionária ψ-Caputo; Aproximação L1-2 ψ-Caputo; Fórmula L1-2.

Texto completo:

PDF

Referências


R. Almeida. “A Caputo fractional derivative of a function with respect to another function”. Em: Communications in Nonlinear Science and Numerical Simulation 44 (2017), pp. 460–481.

R. Almeida e N. R. O. Bastos. “A numerical method to solve higher-order fractional differential equations”. Em: Mediterr. J. Math. 13.3 (2016), pp. 1339–1352.

A. K. Anatoly. “Hadamard-type fractional calculus”. Em: Journal of the Korean Mathematical Society 38.6 (2001), pp. 1191–1204.

A. Anguraj, S. Kanjanadevi e J. J. Nieto. “Mild solutions of Riemann-Liouville fractional differential equations with fractional impulses”. Em: Nonlinear Anal.: Modell. Control 22.6 (2017), pp. 753–764.

Y. Chen, X. Ke e Y. Wei. “Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis”. Em: Appl. Math. Comput. 251 (2015), pp. 475–488.

M. Duarte O. e J. A Tenreiro M. “Fractional signal processing and applications”. Em: Signal processing 83.11 (2003).

S. Erokhin e O. Roshka. “Supplement of differential equations of fraction order for forecasting of financial markets”. Em: MATEC Web of Conferences. Vol. 170. EDP Sciences. 2018, p. 01075.

L. R. Evangelista e E. K. Lenzi. Fractional diffusion equations and anomalous diffusion. Cambridge University Press, 2018.

G. H. Gao, Z. Z Sun e H. W. Zhang. “A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications”. Em: Journal of Computational Physics 259 (2014), pp. 33–50.

A. A. Kilbas, H. M. Srivastava e J. J. Trujillo. Theory and applications of fractional differential equations. Vol. 204. elsevier, 2006.

R. J. LeVeque. Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM, 2007.

E. M. Mendes, G. H. O. Salgado e L. A. Aguirre. “Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition”. Em: Commun. Nonlinear Sci. Numer. Simul. 69 (2019), pp. 237–247.

I. Podlubny. “Fractional differential equations”. Em: Mathematics in science and engineering 198 (1999), pp. 41–119.

G. S. Teodoro. “Derivadas Fracionárias: Tipos e Critérios de Validade”. Tese de doutorado. Tese de Doutorado, Imecc-Unicamp, Campinas, 2019.

J. Vanterler da C. Sousa e E. Capelas De Oliveira. “Leibniz type rule: ψ-Hilfer fractional operator”. Em: Commun. Nonlinear Sci. Numer. Simul. 77 (2019), pp. 305–311.

J. Vanterler da C. Sousa e E. Capelas De Oliveira. “On the Ψ-fractional integral and applications”. Em: Comput. Appl. Math. 38.1 (2019), pp. 1–22.

J. Vanterler da C. Sousa e E. Capelas De Oliveira. “On the ψ-Hilfer fractional derivative”. Em: Commun. Nonlinear Sci. Numer. Simul. 60 (2018), pp. 72–91.

A. Wiman. “Uber den fundamental satz in der theorie der Funktionen Eα(z)”. Em: Acta Math 29.1 (1905), pp. 191–201




DOI: https://doi.org/10.5540/03.2022.009.01.0239

Apontamentos

  • Não há apontamentos.


SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120
 


Normas para publicação | Contato