A Bayesian Inference Model for the Estimation of Time-Dependent Pollutant Emissions

Roseane Albani, Hélio S. Migon, Antônio J. Silva Neto, Vinicius Albani


Source identification methodologies use inverse problems techniques combined with a dispersion model and observational data to estimate relevant source parameters. This work proposes a time-dependent model to estimate source parameters of multiple point releases. The forward problem or dispersion model accounts for the time variation of the wind field using a Fourier series that best fits the wind field time series of the experimental data. The source parameters are estimated by an adaptive Monte Carlo Markov Chain algorithm.


Source Estimation; Atmospheric Dispersion; Bayesian Inference; Monte Carlo Markov; Chain Algorithms; Inverse Modeling.

Texto completo:

PDF (English)


R. Albani and V. Albani. “An Accurate Strategy to Retrieve Multiple Source Emissions in the Atmosphere”. In: Atmos. Environ. 233 (2020), p. 117579. doi: 10.1016/j.atmosenv. 2020.117579.

R. Albani, V. Albani, and A. Silva Neto. “Source characterization of airborne pollutant emissions by hybrid metaheuristic/gradient-based optimization techniques”. In: Environ Pollut. 267 (2020), p. 115618. doi: https://doi.org/10.1016/j.envpol.2020.115618.

R.A.S Albani et al. “A Bayesian Inference Approach for the Identification of Multiple Atmospheric Emissions with Uncertainty Quantification”. In: Proceedings of XXIV Encontro Nacional de Modelagem Computacional. 2021. doi: 10.29327/154013.24-62.

R.A.S. Albani and V.V.L. Albani. “An Accurate Strategy to Retrieve Multiple Source Emissions in the Atmosphere”. In: Atmospheric Environment 233 (2020), p. 117579. doi: 10.1016/j.atmosenv.2020.117579.

R.A.S. Albani and V.V.L. Albani. “Tikhonov-Type Regularization and the Finite Element Method Applied to Point Source Estimation in the Atmosphere”. In: Atmos. Environ. 211 (2019), pp. 69–78. doi: 10.1016/j.atmosenv.2019.04.063.

R.A.S. Albani et al. “Uncertainty quantification and atmospheric source estimation with a discrepancy-based and a state-dependent adaptative MCMC”. In: Environmental Pollution (2021), p. 118039. doi: 10.1016/j.envpol.2021.118039.

T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. “A new Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Square Method for AdvectiveDiffusive Equations”. In: Comput. Methods Appl. Mech. Engrg. 73 (1989), pp. 173– 189. doi: 10.1016/0045-7825(89)90111-4.

D. Gamerman H.H. Lopes. Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC Press, 2006.

A.V. Mamonov and Y.-H. R. Tsai. “Point source identification in nonlinear advection-diffusionreaction systems”. In: Inverse Problems 29.3 (2013), p. 035009. doi: 10 . 1088 / 0266 - 5611/29/3/035009.

P. Müller. “Metropolis based posterior integration schemes”. In: Numerical Recipes in Fortran (2nd Edition. Citeseer. 1994.

Christian P Robert, George Casella, and George Casella. Introducing Monte Carlo Methods with R. Vol. 18. Springer, 2010.

A. Gelman D.B. Rubin. “Inference from iterative simulation using multiple sequences”. In: Statist. Sci. 7.4 (1992), pp. 457–472. doi: 10.1214/ss/1177011136.

D. P. Storwald. Detailed Test Plan for the Fusing Sensor Information from Observing 696 Networks (Fusion) Field Trial (FFT-07). Tech. rep. 2007.

DOI: https://doi.org/10.5540/03.2022.009.01.0228


  • Não há apontamentos.

SBMAC - Sociedade de Matemática Aplicada e Computacional
Edifício Medical Center - Rua Maestro João Seppe, nº. 900, 16º. andar - Sala 163 | São Carlos/SP - CEP: 13561-120

Normas para publicação | Contato